[HTML][HTML] Digital pathology and artificial intelligence in translational medicine and clinical practice

V Baxi, R Edwards, M Montalto, S Saha - Modern Pathology, 2022 - Elsevier
Traditional pathology approaches have played an integral role in the delivery of diagnosis,
semi-quantitative or qualitative assessment of protein expression, and classification of …

Breast cancer detection using deep learning: Datasets, methods, and challenges ahead

RA Dar, M Rasool, A Assad - Computers in biology and medicine, 2022 - Elsevier
Breast Cancer (BC) is the most commonly diagnosed cancer and second leading cause of
mortality among women. About 1 in 8 US women (about 13%) will develop invasive BC …

Democratising deep learning for microscopy with ZeroCostDL4Mic

L von Chamier, RF Laine, J Jukkala, C Spahn… - Nature …, 2021 - nature.com
Deep Learning (DL) methods are powerful analytical tools for microscopy and can
outperform conventional image processing pipelines. Despite the enthusiasm and …

Deep learning in cancer pathology: a new generation of clinical biomarkers

A Echle, NT Rindtorff, TJ Brinker, T Luedde… - British journal of …, 2021 - nature.com
Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers.
However, the growing number of these complex biomarkers tends to increase the cost and …

[HTML][HTML] An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN)

M Desai, M Shah - Clinical eHealth, 2021 - Elsevier
This paper aims to review Artificial neural networks, Multi-Layer Perceptron Neural network
(MLP) and Convolutional Neural network (CNN) employed to detect breast malignancies for …

Designing deep learning studies in cancer diagnostics

A Kleppe, OJ Skrede, S De Raedt, K Liestøl… - Nature Reviews …, 2021 - nature.com
The number of publications on deep learning for cancer diagnostics is rapidly increasing,
and systems are frequently claimed to perform comparable with or better than clinicians …

Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology

K Bera, KA Schalper, DL Rimm, V Velcheti… - Nature reviews Clinical …, 2019 - nature.com
In the past decade, advances in precision oncology have resulted in an increased demand
for predictive assays that enable the selection and stratification of patients for treatment. The …

Causability and explainability of artificial intelligence in medicine

A Holzinger, G Langs, H Denk… - … Reviews: Data Mining …, 2019 - Wiley Online Library
Explainable artificial intelligence (AI) is attracting much interest in medicine. Technically, the
problem of explainability is as old as AI itself and classic AI represented comprehensible …

Brain tumor detection based on deep learning approaches and magnetic resonance imaging

AB Abdusalomov, M Mukhiddinov, TK Whangbo - Cancers, 2023 - mdpi.com
Simple Summary In this research, we addressed the challenging task of brain tumor
detection in MRI scans using a large collection of brain tumor images. We demonstrated that …

[HTML][HTML] The impact of pre-and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

M Salvi, UR Acharya, F Molinari… - Computers in Biology and …, 2021 - Elsevier
Recently, deep learning frameworks have rapidly become the main methodology for
analyzing medical images. Due to their powerful learning ability and advantages in dealing …