Tropical spectrahedra

X Allamigeon, S Gaubert, M Skomra - Discrete & Computational Geometry, 2020 - Springer
We introduce tropical spectrahedra, defined as the images by the nonarchimedean
valuation of spectrahedra over the field of real Puiseux series. We provide an explicit …

Factorization of polynomials over the symmetrized tropical semiring and Descartes' rule of sign over ordered valued fields

M Akian, S Gaubert, H Tavakolipour - arXiv preprint arXiv:2301.05483, 2023 - arxiv.org
The symmetrized tropical semiring is an extension of the tropical semifield, initially
introduced to solve tropical linear systems using Cramer's rule. It is equivalent to the real …

The fundamental theorem of tropical differential algebraic geometry

F Aroca, C Garay, Z Toghani - Pacific Journal of Mathematics, 2016 - msp.org
Let I be an ideal of the ring of Laurent polynomials K [x 1±1,…, xn±1] with coefficients in a
real-valued field (K, v). The fundamental theorem of tropical algebraic geometry states the …

Non-archimedean coamoebae

M Nisse, F Sottile - arXiv preprint arXiv:1110.1033, 2011 - arxiv.org
A coamoeba is the image of a subvariety of a complex torus under the argument map to the
real torus. Similarly, a non-archimedean coamoeba is the image of a subvariety of a torus …

Hahn analytification and connectivity of higher rank tropical varieties

T Foster, D Ranganathan - manuscripta mathematica, 2016 - Springer
We show that the tropicalization of a connected variety over a higher rank valued field is a
path connected topological space. This establishes an affirmative answer to a question …

Local tropicalization

P Popescu-Pampu, D Stepanov - arXiv preprint arXiv:1204.6154, 2012 - arxiv.org
In this paper we propose a general functorial definition of the operation of\emph {local
tropicalization} in commutative algebra. Let $ R $ be a commutative ring, $\Gamma $ a …

Tropical geometry over higher dimensional local fields

SD Banerjee - Journal für die reine und angewandte Mathematik …, 2015 - degruyter.com
We introduce the tropicalization of closed sub-schemes of a torus defined over a higher
dimensional local field. We study the basic invariants of such tropicalizations. This is a …

Degenerations of toric varieties over valuation rings

T Foster, D Ranganathan - Bulletin of the London Mathematical …, 2016 - academic.oup.com
We develop a theory of multistage degenerations of toric varieties over finite rank valuation
rings, extending the Mumford–Gubler theory in rank 1. Such degenerations are constructed …

Convergent Hahn series and tropical geometry of higher rank

M Joswig, B Smith - Journal of the London Mathematical …, 2023 - Wiley Online Library
We propose to study the tropical geometry specifically arising from convergent Hahn series
in multiple indeterminates. One application is a new view on stable intersections of tropical …

Higher rank inner products, Voronoi tilings and metric degenerations of tori

O Amini, N Nicolussi - arXiv preprint arXiv:2310.06523, 2023 - arxiv.org
Higher rank Voronoi tilings Page 1 HIGHER RANK INNER PRODUCTS, VORONOI TILINGS
AND METRIC DEGENERATIONS OF TORI OMID AMINI AND NOEMA NICOLUSSI Abstract …