[图书][B] Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences

G Camps-Valls, D Tuia, XX Zhu, M Reichstein - 2021 - books.google.com
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep
learning in the field of earth sciences, from four leading voices Deep learning is a …

The new generation brain-inspired sparse learning: A comprehensive survey

L Jiao, Y Yang, F Liu, S Yang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In recent years, the enormous demand for computing resources resulting from massive data
and complex network models has become the limitation of deep learning. In the large-scale …

Deep sparse coding for invariant multimodal halle berry neurons

E Kim, D Hannan, G Kenyon - Proceedings of the IEEE …, 2018 - openaccess.thecvf.com
Deep feed-forward convolutional neural networks (CNNs) have become ubiquitous in
virtually all machine learning and computer vision challenges; however, advancements in …

Un-rectifying non-linear networks for signal representation

WL Hwang, A Heinecke - IEEE Transactions on Signal …, 2019 - ieeexplore.ieee.org
We consider deep neural networks with rectifier activations and max-pooling from a signal
representation perspective. In this view, such representations mark the transition from using …

Plan optimization for creating bilingual dictionaries of low-resource languages

AH Nasution, Y Murakami… - … Conference on Culture …, 2017 - ieeexplore.ieee.org
The constraint-based approach has been proven useful for inducing bilingual lexicons for
closely-related low-resource languages. When we want to create multiple bilingual …

Deep self-taught learning for remote sensing image classification

A Bettge, R Roscher, S Wenzel - arXiv preprint arXiv:1710.07096, 2017 - arxiv.org
This paper addresses the land cover classification task for remote sensing images by deep
self-taught learning. Our self-taught learning approach learns suitable feature …

Aircode: A robust object encoding method

K Xu, C Wang, C Chen, W Wu… - IEEE Robotics and …, 2022 - ieeexplore.ieee.org
Object encoding and identification are crucial for many robotic tasks such as autonomous
exploration and semantic relocalization. Existing works heavily rely on the tracking of …

MULTI-LAYER MODEL AND TRAINING METHOD FOR MALWARE TRAFFIC DEETECTION BASED ON DECISION TREE ENSEMBLE

МО Зарецький, АС Москаленко… - … and Computer Systems, 2020 - nti.khai.edu
The model and training method of multilayer feature extractor and decision rules for a
malware traffic detector is proposed. The feature extractor model is based on a convolutional …

[PDF][PDF] Multi-layer model and training method for information-extreme malware traffic detector.

A Moskalenko, V Moskalenko, A Shaiekhov… - CMIS, 2020 - ceur-ws.org
Model-based on multilayer convolutional sparse coding feature extractor and information-
extreme decision rules for malware traffic detection is presented in the paper. Growing …

Інтелектуальна автономна бортова система безпілотного літального апарату для ідентифікації об'єктів на місцевості

АС Москаленко, ОБ Берест, СС Мартиненко… - 2018 - essuir.sumdu.edu.ua
Мета роботи–підвищення функціональної ефективності бортової системи безпілотного
літального апарату, що здійснює у автономному режимі локальну навігацію та …