Review of machine learning techniques for EEG based brain computer interface

S Aggarwal, N Chugh - Archives of Computational Methods in …, 2022 - Springer
A brain computer interface (BCI) framework uses computer algorithms to detect mental
activity patterns and manipulate external devices. Because of its simplicity and non …

Deep learning-based electroencephalography analysis: a systematic review

Y Roy, H Banville, I Albuquerque… - Journal of neural …, 2019 - iopscience.iop.org
Context. Electroencephalography (EEG) is a complex signal and can require several years
of training, as well as advanced signal processing and feature extraction methodologies to …

Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion

SU Amin, M Alsulaiman, G Muhammad… - Future Generation …, 2019 - Elsevier
Electroencephalography (EEG) motor imagery (MI) signals have recently gained a lot of
attention as these signals encode a person's intent of performing an action. Researchers …

A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update

F Lotte, L Bougrain, A Cichocki, M Clerc… - Journal of neural …, 2018 - iopscience.iop.org
Objective. Most current electroencephalography (EEG)-based brain–computer interfaces
(BCIs) are based on machine learning algorithms. There is a large diversity of classifier …

Brain-computer interface: Advancement and challenges

MF Mridha, SC Das, MM Kabir, AA Lima, MR Islam… - Sensors, 2021 - mdpi.com
Brain-Computer Interface (BCI) is an advanced and multidisciplinary active research domain
based on neuroscience, signal processing, biomedical sensors, hardware, etc. Since the …

Deep learning with convolutional neural networks for EEG decoding and visualization

RT Schirrmeister, JT Springenberg… - Human brain …, 2017 - Wiley Online Library
Deep learning with convolutional neural networks (deep ConvNets) has revolutionized
computer vision through end‐to‐end learning, that is, learning from the raw data. There is …

EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces

VJ Lawhern, AJ Solon, NR Waytowich… - Journal of neural …, 2018 - iopscience.iop.org
Objective. Brain–computer interfaces (BCI) enable direct communication with a computer,
using neural activity as the control signal. This neural signal is generally chosen from a …

EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their …

X Gu, Z Cao, A Jolfaei, P Xu, D Wu… - … /ACM transactions on …, 2021 - ieeexplore.ieee.org
Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact
with the environment. Recent advancements in technology and machine learning algorithms …

Learning temporal information for brain-computer interface using convolutional neural networks

S Sakhavi, C Guan, S Yan - IEEE transactions on neural …, 2018 - ieeexplore.ieee.org
Deep learning (DL) methods and architectures have been the state-of-the-art classification
algorithms for computer vision and natural language processing problems. However, the …

EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation

Z Gao, X Wang, Y Yang, C Mu, Q Cai… - IEEE transactions on …, 2019 - ieeexplore.ieee.org
Driver fatigue evaluation is of great importance for traffic safety and many intricate factors
would exacerbate the difficulty. In this paper, based on the spatial-temporal structure of …