Safe learning in robotics: From learning-based control to safe reinforcement learning

L Brunke, M Greeff, AW Hall, Z Yuan… - Annual Review of …, 2022 - annualreviews.org
The last half decade has seen a steep rise in the number of contributions on safe learning
methods for real-world robotic deployments from both the control and reinforcement learning …

Reinforcement learning algorithms: A brief survey

AK Shakya, G Pillai, S Chakrabarty - Expert Systems with Applications, 2023 - Elsevier
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …

Mastering diverse domains through world models

D Hafner, J Pasukonis, J Ba, T Lillicrap - arXiv preprint arXiv:2301.04104, 2023 - arxiv.org
Developing a general algorithm that learns to solve tasks across a wide range of
applications has been a fundamental challenge in artificial intelligence. Although current …

Multi-game decision transformers

KH Lee, O Nachum, MS Yang, L Lee… - Advances in …, 2022 - proceedings.neurips.cc
A longstanding goal of the field of AI is a method for learning a highly capable, generalist
agent from diverse experience. In the subfields of vision and language, this was largely …

Learning agile soccer skills for a bipedal robot with deep reinforcement learning

T Haarnoja, B Moran, G Lever, SH Huang… - Science Robotics, 2024 - science.org
We investigated whether deep reinforcement learning (deep RL) is able to synthesize
sophisticated and safe movement skills for a low-cost, miniature humanoid robot that can be …

Deep reinforcement learning at the edge of the statistical precipice

R Agarwal, M Schwarzer, PS Castro… - Advances in neural …, 2021 - proceedings.neurips.cc
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing
their relative performance on a large suite of tasks. Most published results on deep RL …

Bigger, better, faster: Human-level atari with human-level efficiency

M Schwarzer, JSO Ceron, A Courville… - International …, 2023 - proceedings.mlr.press
We introduce a value-based RL agent, which we call BBF, that achieves super-human
performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used …

Mastering atari with discrete world models

D Hafner, T Lillicrap, M Norouzi, J Ba - arXiv preprint arXiv:2010.02193, 2020 - arxiv.org
Intelligent agents need to generalize from past experience to achieve goals in complex
environments. World models facilitate such generalization and allow learning behaviors …

Transfer learning in deep reinforcement learning: A survey

Z Zhu, K Lin, AK Jain, J Zhou - IEEE Transactions on Pattern …, 2023 - ieeexplore.ieee.org
Reinforcement learning is a learning paradigm for solving sequential decision-making
problems. Recent years have witnessed remarkable progress in reinforcement learning …

Cleanrl: High-quality single-file implementations of deep reinforcement learning algorithms

S Huang, RFJ Dossa, C Ye, J Braga… - Journal of Machine …, 2022 - jmlr.org
CleanRL is an open-source library that provides high-quality single-file implementations of
Deep Reinforcement Learning (DRL) algorithms. These single-file implementations are self …