Safe learning in robotics: From learning-based control to safe reinforcement learning
The last half decade has seen a steep rise in the number of contributions on safe learning
methods for real-world robotic deployments from both the control and reinforcement learning …
methods for real-world robotic deployments from both the control and reinforcement learning …
Reinforcement learning algorithms: A brief survey
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
Mastering diverse domains through world models
Developing a general algorithm that learns to solve tasks across a wide range of
applications has been a fundamental challenge in artificial intelligence. Although current …
applications has been a fundamental challenge in artificial intelligence. Although current …
Multi-game decision transformers
A longstanding goal of the field of AI is a method for learning a highly capable, generalist
agent from diverse experience. In the subfields of vision and language, this was largely …
agent from diverse experience. In the subfields of vision and language, this was largely …
Learning agile soccer skills for a bipedal robot with deep reinforcement learning
We investigated whether deep reinforcement learning (deep RL) is able to synthesize
sophisticated and safe movement skills for a low-cost, miniature humanoid robot that can be …
sophisticated and safe movement skills for a low-cost, miniature humanoid robot that can be …
Deep reinforcement learning at the edge of the statistical precipice
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing
their relative performance on a large suite of tasks. Most published results on deep RL …
their relative performance on a large suite of tasks. Most published results on deep RL …
Bigger, better, faster: Human-level atari with human-level efficiency
We introduce a value-based RL agent, which we call BBF, that achieves super-human
performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used …
performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used …
Mastering atari with discrete world models
Intelligent agents need to generalize from past experience to achieve goals in complex
environments. World models facilitate such generalization and allow learning behaviors …
environments. World models facilitate such generalization and allow learning behaviors …
Transfer learning in deep reinforcement learning: A survey
Reinforcement learning is a learning paradigm for solving sequential decision-making
problems. Recent years have witnessed remarkable progress in reinforcement learning …
problems. Recent years have witnessed remarkable progress in reinforcement learning …
Cleanrl: High-quality single-file implementations of deep reinforcement learning algorithms
CleanRL is an open-source library that provides high-quality single-file implementations of
Deep Reinforcement Learning (DRL) algorithms. These single-file implementations are self …
Deep Reinforcement Learning (DRL) algorithms. These single-file implementations are self …