The homomorphisms of distributive semimodules
AHA Alhamti, AMA Alhossaini - Iraqi Journal of Science, 2024 - ijs.uobaghdad.edu.iq
Many researchers discussed distributive modules and their properties. In this work, the
distributive property will be studied over semimodules. Some of the results obtained in …
distributive property will be studied over semimodules. Some of the results obtained in …
[PDF][PDF] On torsion free distributive modules
N Zamani - Contributions to Algebra and Geometry, 2009 - emis.de
Let R be a commutative ring with identity and let M be a torsion free R-module. Several
characterizations of distributive modules are investigated. Indeed, among other equivalent …
characterizations of distributive modules are investigated. Indeed, among other equivalent …
Modules with distributive submodule lattice
AA Tuganbaev - Handbook of Algebra, 2000 - Elsevier
Publisher Summary This chapter discusses the distributive modules over the
noncommutative rings. All the rings are assumed to be associative and to have a nonzero …
noncommutative rings. All the rings are assumed to be associative and to have a nonzero …
[PDF][PDF] Characterizations of Graded Distributive Modules
N Zamani - 2008 - sid.ir
CHARACTERIZATIONS OF GRADED DISTRIBUTIVE MODULES Page 1 Journal of Applied
Mathematics, Islamic Azad Universityof Lahijan Vol.S, No.I6, Spring 2008 Characterizations of …
Mathematics, Islamic Azad Universityof Lahijan Vol.S, No.I6, Spring 2008 Characterizations of …
On graded distributive modules.
N Zamani - Mathematical Notes, 2008 - search.ebscohost.com
On Graded Distributive Modules* Page 1 ISSN 0001-4346, Mathematical Notes, 2008, Vol. 83,
No. 4, pp. 485–491. c © Pleiades Publishing, Ltd., 2008. Published in Russian in …
No. 4, pp. 485–491. c © Pleiades Publishing, Ltd., 2008. Published in Russian in …
[引用][C] О градуированных дистрибутивных модулях
Н Замани - Математические заметки, 2008 - mathnet.ru
(X+ Y)∩ Z=(X∩ Z)+(Y∩ Z) для всех градуированных подмодулей X, Y и Z модуля M
(равносильное условие:(X∩ Y)+ Z=(X+ Z)∩(Y+ Z) для всех градуированных подмодулей …
(равносильное условие:(X∩ Y)+ Z=(X+ Z)∩(Y+ Z) для всех градуированных подмодулей …