L2 to Lp bounds for spectral projectors on thin intervals in Riemannian manifolds

P Germain - arXiv preprint arXiv:2306.16981, 2023 - arxiv.org
Given a Riemannian manifold endowed with its Laplace-Beltrami operator, consider the
associated spectral projector on a thin interval. As an operator from L2 to Lp, what is its …

Probabilistic local well-posedness for the Schrödinger equation posed for the Grushin Laplacian

L Gassot, M Latocca - Journal of Functional Analysis, 2022 - Elsevier
We study the local well-posedness of the nonlinear Schrödinger equation associated to the
Grushin operator with random initial data. To the best of our knowledge, no well-posedness …

Decay estimates and Strichartz inequalities for a class of dispersive equations on H-type groups

M Song, J Tan - arXiv preprint arXiv:2407.06899, 2024 - arxiv.org
Let $\mathcal {L} $ be the sub-Laplacian on H-type groups and $\phi:\mathbb
{R}^+\to\mathbb {R} $ be a smooth function. The primary objective of the paper is to study …

Strichartz estimates for geophysical fluid equations using Fourier restriction theory

C Gentil, C Tabary - arXiv preprint arXiv:2401.09079, 2024 - arxiv.org
We prove Strichartz estimates for the semigroups associated to stratified and/or rotating
inviscid geophysical fluids using Fourier restriction theory. We prove new results for rotating …

Decay estimates for a class of wave equations on the Heisenberg group

M Song, J Yang - Annali di Matematica Pura ed Applicata (1923-), 2023 - Springer
In this paper, we study a class of dispersive wave equations on the Heisenberg group H n.
Based on the group Fourier transform on H n, the properties of the Laguerre functions and …

Local dispersive and Strichartz estimates for the Schr {\" o} dinger operator on the Heisenberg group

H Bahouri, I Gallagher - arXiv preprint arXiv:2012.08301, 2020 - arxiv.org
It was proved by H. Bahouri, P. G {\'e} rard and C.-J. Xu in [9] that the Schr {\" o} dinger
equation on the Heisenberg group $\mathbb {H}^ d $, involving the sublaplacian, is an …

Uniform resolvent estimates, smoothing effects and spectral stability for the Heisenberg sublaplacian

L Fanelli, H Mizutani, L Roncal… - arXiv preprint arXiv …, 2024 - arxiv.org
We establish global bounds for solutions to stationary and time-dependent Schr\" odinger
equations associated with the sublaplacian $\mathcal L $ on the Heisenberg group, as well …

Non-existence of radial eigenfunctions for the perturbed Heisenberg sublaplacian

L Fanelli, H Mizutani, L Roncal… - arXiv preprint arXiv …, 2023 - arxiv.org
We prove uniform resolvent estimates in weighted $ L^ 2$-spaces for radial solutions of the
sublaplacian $\mathcal {L} $ on the Heisenberg group $\mathbb {H}^ d $. The proofs are …

Decay estimates for a class of Dunkl wave equations

C Luo, SS Mondal, M Song - arXiv preprint arXiv:2407.06949, 2024 - arxiv.org
Let $\Delta_\kappa $ be the Dunkl Laplacian on $\mathbb {R}^ n $ and $\phi:\mathbb
{R}^+\to\mathbb {R} $ is a smooth function. The aim of this manuscript is twofold. First, we …

Quantum-classical correspondence and obstruction to dispersion on the Engel group

L Benedetto - arXiv preprint arXiv:2408.16407, 2024 - arxiv.org
In this paper, we develop the semiclassical analysis of the lowest dimensional simply
connected nilpotent Lie group of step 3, called the Engel group and denoted by ${\mathbb …