A well-balanced ADER discontinuous Galerkin method based on differential transformation procedure for shallow water equations

G Li, J Li, S Qian, J Gao - Applied Mathematics and Computation, 2021 - Elsevier
This article develops a new discontinuous Galerkin (DG) method on structured meshes for
solving shallow water equations. The method here applies the one-stage ADER (Arbitrary …

一类高效率高分辨率加映射的WENO 格式及其在复杂流动问题数值模拟中的应用

钟巍, 贾雷明, 王澍霏, 田宙 - 力学学报, 2022 - lxxb.cstam.org.cn
由于映射操作会带来额外的计算时间消耗, 传统加映射的WENO 格式存在计算效率低的缺陷.
为了提高传统加映射WENO 格式的计算效率, 通过利用标准符号函数的一种近似逼近函数构造 …

[HTML][HTML] 浅水波方程的高阶保正Well-Balanced ADER 间断Galerkin 格式

周翔宇, 张志壮, 钱守国, 李刚 - Advances in Applied Mathematics, 2023 - hanspub.org
本文针对具有不规则几何形状和非平坦底地形的浅水波方程, 引入了保正高阶ADER
间断Galerkin 方法, 该方法能准确地保持静水的稳态. 为了满足well-balanced 的性质 …

[HTML][HTML] 非守恒双曲方程组的路径守恒ADER 间断Galerkin 方法: 在浅水方程中的应用

赵晓旭, 刘仁迪, 钱守国, 李刚 - Advances in Applied Mathematics, 2023 - hanspub.org
本文提出了求解非守恒双曲型偏微分方程的一种新的路径守恒间断Galerkin (DG) 方法. 特别地,
这里的方法采用了一级ADER (在空间和时间的任意导数) 方法来实现时间离散化. 此外 …

A new ADER discontinuous Galerkin method based on differential transformation procedure for hyperbolic conservation laws

Y Zhang, G Li, S Qian, J Gao - Computational and Applied Mathematics, 2021 - Springer
This article develops a new discontinuous Galerkin (DG) method with the one-stage arbitrary
derivatives in time and space approach to solve one-dimensional hyperbolic conservation …

A HIGH-EFFICIENCY AND HIGH-RESOLUTION MAPPED WENO SCHEME AND ITS APPLICATIONS IN THE NUMERICAL SIMULATION OF PROBLEMS WITH …

Z Wei, J Leiming, W Shufei, T Zhou - Chinese Journal of …, 2022 - lxxb.cstam.org.cn
The traditional mapped weighted essentially non-oscillatory (WENO) schemes commonly
suffer from the drawback of low-efficiency, since they usually require the mapping processes …

[HTML][HTML] 双曲守恒律方程的高精度ADER 间断Galerkin 方法

张莹娟, 李姣姣, 李刚 - Advances in Applied Mathematics, 2020 - hanspub.org
本文提出了一种全新的间断Galerkin (DG) 方法, 该方法使用单级ADER (任意时–空导数)
方式进行时间离散. 该方法利用微分变换步骤递归地将解的时–空展开系数通过低阶空间展开 …

A new well-balanced ADER discontinuous Galerkin method for the shallow water flows in channels with irregular geometry

G Li, S Qian, M Wang, C Ji, J Gao - Available at SSRN 4186194 - papers.ssrn.com
This article develops a new well-balanced discontinuous Galerkin method for the shallow
water flows in channels with irregular geometry and over uneven bottom topography, which …

[PDF][PDF] A path-conservative ADER discontinuous Galerkin method for non-conservative hyperbolic systems: applications to shallow water equations

X Zhaoa, R Liua, S Qiana, G Lia - researchgate.net
In this article, we propose a new path-conservative discontinuous Galerkin (DG) method to
solve the non-conservative hyperbolic partial differential equations (PDE). In particular, the …

Space-Time Isogeometric Discontinuous Galerkin Method for Hamilton–Jacobi–Bellman Equations

A CISSE, A EL AKRI, A RATNANI - M3A_24 - researchgate.net
The numerical resolution of Hamilton–Jacobi (HJ) and Hamilton–Jacobi–Bellman (HJB)
equations is performed using the Space-Time Isogeometric Discontinuous Galerkin Method …