Towards continual reinforcement learning: A review and perspectives

K Khetarpal, M Riemer, I Rish, D Precup - Journal of Artificial Intelligence …, 2022 - jair.org
In this article, we aim to provide a literature review of different formulations and approaches
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …

Continual learning of natural language processing tasks: A survey

Z Ke, B Liu - arXiv preprint arXiv:2211.12701, 2022 - arxiv.org
Continual learning (CL) is a learning paradigm that emulates the human capability of
learning and accumulating knowledge continually without forgetting the previously learned …

Class-incremental learning: survey and performance evaluation on image classification

M Masana, X Liu, B Twardowski… - … on Pattern Analysis …, 2022 - ieeexplore.ieee.org
For future learning systems, incremental learning is desirable because it allows for: efficient
resource usage by eliminating the need to retrain from scratch at the arrival of new data; …

Gdumb: A simple approach that questions our progress in continual learning

A Prabhu, PHS Torr, PK Dokania - … , Glasgow, UK, August 23–28, 2020 …, 2020 - Springer
We discuss a general formulation for the Continual Learning (CL) problem for classification—
a learning task where a stream provides samples to a learner and the goal of the learner …

Dark experience for general continual learning: a strong, simple baseline

P Buzzega, M Boschini, A Porrello… - Advances in neural …, 2020 - proceedings.neurips.cc
Continual Learning has inspired a plethora of approaches and evaluation settings; however,
the majority of them overlooks the properties of a practical scenario, where the data stream …

Abdomenct-1k: Is abdominal organ segmentation a solved problem?

J Ma, Y Zhang, S Gu, C Zhu, C Ge… - … on Pattern Analysis …, 2021 - ieeexplore.ieee.org
With the unprecedented developments in deep learning, automatic segmentation of main
abdominal organs seems to be a solved problem as state-of-the-art (SOTA) methods have …

Remember the past: Distilling datasets into addressable memories for neural networks

Z Deng, O Russakovsky - Advances in Neural Information …, 2022 - proceedings.neurips.cc
We propose an algorithm that compresses the critical information of a large dataset into
compact addressable memories. These memories can then be recalled to quickly re-train a …

Fetril: Feature translation for exemplar-free class-incremental learning

G Petit, A Popescu, H Schindler… - Proceedings of the …, 2023 - openaccess.thecvf.com
Exemplar-free class-incremental learning is very challenging due to the negative effect of
catastrophic forgetting. A balance between stability and plasticity of the incremental process …

Adaptive aggregation networks for class-incremental learning

Y Liu, B Schiele, Q Sun - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Abstract Class-Incremental Learning (CIL) aims to learn a classification model with the
number of classes increasing phase-by-phase. An inherent problem in CIL is the stability …

Supervised contrastive replay: Revisiting the nearest class mean classifier in online class-incremental continual learning

Z Mai, R Li, H Kim, S Sanner - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Online class-incremental continual learning (CL) studies the problem of learning new
classes continually from an online non-stationary data stream, intending to adapt to new …