Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

Deep learning for tomographic image reconstruction

G Wang, JC Ye, B De Man - Nature machine intelligence, 2020 - nature.com
Deep-learning-based tomographic imaging is an important application of artificial
intelligence and a new frontier of machine learning. Deep learning has been widely used in …

Sparse synthetic aperture radar imaging from compressed sensing and machine learning: Theories, applications, and trends

G Xu, B Zhang, H Yu, J Chen, M Xing… - IEEE Geoscience and …, 2022 - ieeexplore.ieee.org
Synthetic aperture radar (SAR) image formation can be treated as a class of ill-posed linear
inverse problems, and the resolution is limited by the data bandwidth for traditional imaging …

[HTML][HTML] The promise of artificial intelligence and deep learning in PET and SPECT imaging

H Arabi, A AkhavanAllaf, A Sanaat, I Shiri, H Zaidi - Physica Medica, 2021 - Elsevier
This review sets out to discuss the foremost applications of artificial intelligence (AI),
particularly deep learning (DL) algorithms, in single-photon emission computed tomography …

Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning

P Guo, P Wang, J Zhou, S Jiang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Fast and accurate reconstruction of magnetic resonance (MR) images from under-sampled
data is important in many clinical applications. In recent years, deep learning-based …

Deep learning for PET image reconstruction

AJ Reader, G Corda, A Mehranian… - … on Radiation and …, 2020 - ieeexplore.ieee.org
This article reviews the use of a subdiscipline of artificial intelligence (AI), deep learning, for
the reconstruction of images in positron emission tomography (PET). Deep learning can be …

SNIPS: Solving noisy inverse problems stochastically

B Kawar, G Vaksman, M Elad - Advances in Neural …, 2021 - proceedings.neurips.cc
In this work we introduce a novel stochastic algorithm dubbed SNIPS, which draws samples
from the posterior distribution of any linear inverse problem, where the observation is …

Making radiomics more reproducible across scanner and imaging protocol variations: a review of harmonization methods

SA Mali, A Ibrahim, HC Woodruff… - Journal of personalized …, 2021 - mdpi.com
Radiomics converts medical images into mineable data via a high-throughput extraction of
quantitative features used for clinical decision support. However, these radiomic features are …

Light-sheets and smart microscopy, an exciting future is dawning

S Daetwyler, RP Fiolka - Communications biology, 2023 - nature.com
Light-sheet fluorescence microscopy has transformed our ability to visualize and
quantitatively measure biological processes rapidly and over long time periods. In this …

AMP-Net: Denoising-based deep unfolding for compressive image sensing

Z Zhang, Y Liu, J Liu, F Wen… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Most compressive sensing (CS) reconstruction methods can be divided into two categories,
ie model-based methods and classical deep network methods. By unfolding the iterative …