Machine learning for synthetic data generation: a review

Y Lu, M Shen, H Wang, X Wang, C van Rechem… - arXiv preprint arXiv …, 2023 - arxiv.org
Machine learning heavily relies on data, but real-world applications often encounter various
data-related issues. These include data of poor quality, insufficient data points leading to …

A review on generative adversarial networks: Algorithms, theory, and applications

J Gui, Z Sun, Y Wen, D Tao, J Ye - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Generative adversarial networks (GANs) have recently become a hot research topic;
however, they have been studied since 2014, and a large number of algorithms have been …

Synthetic data from diffusion models improves imagenet classification

S Azizi, S Kornblith, C Saharia, M Norouzi… - arXiv preprint arXiv …, 2023 - arxiv.org
Deep generative models are becoming increasingly powerful, now generating diverse high
fidelity photo-realistic samples given text prompts. Have they reached the point where …

Fake it till you make it: Learning transferable representations from synthetic imagenet clones

MB Sarıyıldız, K Alahari, D Larlus… - Proceedings of the …, 2023 - openaccess.thecvf.com
Recent image generation models such as Stable Diffusion have exhibited an impressive
ability to generate fairly realistic images starting from a simple text prompt. Could such …

Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data

J Huang, D Guan, A Xiao, S Lu - Advances in neural …, 2021 - proceedings.neurips.cc
Unsupervised domain adaptation aims to align a labeled source domain and an unlabeled
target domain, but it requires to access the source data which often raises concerns in data …

Fake it till you make it: face analysis in the wild using synthetic data alone

E Wood, T Baltrušaitis, C Hewitt… - Proceedings of the …, 2021 - openaccess.thecvf.com
We demonstrate that it is possible to perform face-related computer vision in the wild using
synthetic data alone. The community has long enjoyed the benefits of synthesizing training …

Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation

P Zhang, B Zhang, T Zhang, D Chen… - Proceedings of the …, 2021 - openaccess.thecvf.com
Self-training is a competitive approach in domain adaptive segmentation, which trains the
network with the pseudo labels on the target domain. However inevitably, the pseudo labels …

ACDC: The adverse conditions dataset with correspondences for semantic driving scene understanding

C Sakaridis, D Dai, L Van Gool - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Level 5 autonomy for self-driving cars requires a robust visual perception system that can
parse input images under any visual condition. However, existing semantic segmentation …

Fda: Fourier domain adaptation for semantic segmentation

Y Yang, S Soatto - … of the IEEE/CVF conference on …, 2020 - openaccess.thecvf.com
We describe a simple method for unsupervised domain adaptation, whereby the
discrepancy between the source and target distributions is reduced by swapping the low …

Semantic-aware domain generalized segmentation

D Peng, Y Lei, M Hayat, Y Guo… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Deep models trained on source domain lack generalization when evaluated on unseen
target domains with different data distributions. The problem becomes even more …