A guide to the Choquard equation

V Moroz, J Van Schaftingen - Journal of Fixed Point Theory and …, 2017 - Springer
We survey old and recent results dealing with the existence and properties of solutions to
the Choquard type equations-Δ u+ V (x) u=\left (| x|^-(N-α)*| u|^ p\right)| u|^ p-2 u\quad …

Multiple normalized solutions for a Sobolev critical Schrödinger-Poisson-Slater equation

L Jeanjean, TT Le - Journal of Differential Equations, 2021 - Elsevier
We look for solutions to the Schrödinger-Poisson-Slater equation (0.1)− Δ u+ λ u− γ (| x|− 1⁎|
u| 2) u− a| u| p− 2 u= 0 in R 3, which satisfy‖ u‖ L 2 (R 3) 2= c for some prescribed c> 0 …

Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime

D Bonheure, JB Casteras, T Gou, L Jeanjean - Transactions of the …, 2019 - ams.org
In this paper, we study the existence of solutions to the mixed dispersion nonlinear
Schrödinger equation\[\gamma\Delta^ 2 u-\Delta u+\alpha u=| u|^{2\sigma} u,\qquad u\in H …

Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency

C Mercuri, V Moroz, J Van Schaftingen - Calculus of Variations and Partial …, 2016 - Springer
We study the nonlocal Schrödinger–Poisson–Slater type equation-Δ u+(I_ α* | u |^ p) | u |^ p-
2 u= | u |^ q-2 u\quad in\quad R^ N,-Δ u+(I α∗| u| p)| u| p-2 u=| u| q-2 u in RN, where N ∈ …

Orbitally stable standing waves of a mixed dispersion nonlinear Schrodinger equation

D Bonheure, JB Casteras, EM Dos Santos… - SIAM Journal on …, 2018 - SIAM
We study the mixed dispersion fourth order nonlinear Schrödinger equation i\partial_tψ-
γΔ^2ψ+βΔψ+|ψ|^2σψ=0\textin\mathbbR*R^N, where γ,σ>0 and β∈R. We focus on standing …

Normalized solutions to the Chern-Simons-Schrödinger system

T Gou, Z Zhang - Journal of Functional Analysis, 2021 - Elsevier
In this paper, we study normalized solutions to the Chern-Simons-Schrödinger system,
which is a gauge-covariant nonlinear Schrödinger system with a long-range electromagnetic …

Existence and uniqueness of constraint minimizers for the planar Schrödinger-Poisson system with logarithmic potentials

Y Guo, W Liang, Y Li - Journal of Differential Equations, 2023 - Elsevier
In this paper, we study constraint minimizers u of the planar Schrödinger-Poisson system
with a logarithmic convolution potential ln⁡| x|⁎ u 2 and a logarithmic external potential V …

Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces

J Bellazzini, M Ghimenti, C Mercuri, V Moroz… - Transactions of the …, 2018 - ams.org
We prove scaling invariant Gagliardo–Nirenberg type inequalities of the form\begin
{equation*}\|\varphi\| _ {L^ p (\mathbb {R}^ d)}\le C\|\varphi\| _ {\dot H^{s}(\mathbb {R} …

Existence and dynamics of normalized solutions to nonlinear Schrödinger equations with mixed fractional Laplacians

L Chergui, T Gou, H Hajaiej - Calculus of Variations and Partial Differential …, 2023 - Springer
In this paper, we are concerned with the existence and dynamics of solutions to the equation
with mixed fractional Laplacians (-Δ) s 1 u+(-Δ) s 2 u+ λ u=| u| p-2 u under the constraint∫ …

Some remarks on a minimization problem associated to a fourth order nonlinear Schr\" odinger equation

N Boussaïd, AJ Fernández, L Jeanjean - arXiv preprint arXiv:1910.13177, 2019 - arxiv.org
Let $\gamma> 0\, $, $\beta> 0\, $, $\alpha> 0$ and $0<\sigma N< 4$. In the present paper,
we study, for $ c> 0$ given, the constrained minimization problem\begin {equation*}\label …