A guide to the Choquard equation
V Moroz, J Van Schaftingen - Journal of Fixed Point Theory and …, 2017 - Springer
We survey old and recent results dealing with the existence and properties of solutions to
the Choquard type equations-Δ u+ V (x) u=\left (| x|^-(N-α)*| u|^ p\right)| u|^ p-2 u\quad …
the Choquard type equations-Δ u+ V (x) u=\left (| x|^-(N-α)*| u|^ p\right)| u|^ p-2 u\quad …
Multiple normalized solutions for a Sobolev critical Schrödinger-Poisson-Slater equation
L Jeanjean, TT Le - Journal of Differential Equations, 2021 - Elsevier
We look for solutions to the Schrödinger-Poisson-Slater equation (0.1)− Δ u+ λ u− γ (| x|− 1⁎|
u| 2) u− a| u| p− 2 u= 0 in R 3, which satisfy‖ u‖ L 2 (R 3) 2= c for some prescribed c> 0 …
u| 2) u− a| u| p− 2 u= 0 in R 3, which satisfy‖ u‖ L 2 (R 3) 2= c for some prescribed c> 0 …
Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime
In this paper, we study the existence of solutions to the mixed dispersion nonlinear
Schrödinger equation\[\gamma\Delta^ 2 u-\Delta u+\alpha u=| u|^{2\sigma} u,\qquad u\in H …
Schrödinger equation\[\gamma\Delta^ 2 u-\Delta u+\alpha u=| u|^{2\sigma} u,\qquad u\in H …
Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency
We study the nonlocal Schrödinger–Poisson–Slater type equation-Δ u+(I_ α* | u |^ p) | u |^ p-
2 u= | u |^ q-2 u\quad in\quad R^ N,-Δ u+(I α∗| u| p)| u| p-2 u=| u| q-2 u in RN, where N ∈ …
2 u= | u |^ q-2 u\quad in\quad R^ N,-Δ u+(I α∗| u| p)| u| p-2 u=| u| q-2 u in RN, where N ∈ …
Orbitally stable standing waves of a mixed dispersion nonlinear Schrodinger equation
We study the mixed dispersion fourth order nonlinear Schrödinger equation i\partial_tψ-
γΔ^2ψ+βΔψ+|ψ|^2σψ=0\textin\mathbbR*R^N, where γ,σ>0 and β∈R. We focus on standing …
γΔ^2ψ+βΔψ+|ψ|^2σψ=0\textin\mathbbR*R^N, where γ,σ>0 and β∈R. We focus on standing …
Normalized solutions to the Chern-Simons-Schrödinger system
T Gou, Z Zhang - Journal of Functional Analysis, 2021 - Elsevier
In this paper, we study normalized solutions to the Chern-Simons-Schrödinger system,
which is a gauge-covariant nonlinear Schrödinger system with a long-range electromagnetic …
which is a gauge-covariant nonlinear Schrödinger system with a long-range electromagnetic …
Existence and uniqueness of constraint minimizers for the planar Schrödinger-Poisson system with logarithmic potentials
Y Guo, W Liang, Y Li - Journal of Differential Equations, 2023 - Elsevier
In this paper, we study constraint minimizers u of the planar Schrödinger-Poisson system
with a logarithmic convolution potential ln| x|⁎ u 2 and a logarithmic external potential V …
with a logarithmic convolution potential ln| x|⁎ u 2 and a logarithmic external potential V …
Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces
We prove scaling invariant Gagliardo–Nirenberg type inequalities of the form\begin
{equation*}\|\varphi\| _ {L^ p (\mathbb {R}^ d)}\le C\|\varphi\| _ {\dot H^{s}(\mathbb {R} …
{equation*}\|\varphi\| _ {L^ p (\mathbb {R}^ d)}\le C\|\varphi\| _ {\dot H^{s}(\mathbb {R} …
Existence and dynamics of normalized solutions to nonlinear Schrödinger equations with mixed fractional Laplacians
In this paper, we are concerned with the existence and dynamics of solutions to the equation
with mixed fractional Laplacians (-Δ) s 1 u+(-Δ) s 2 u+ λ u=| u| p-2 u under the constraint∫ …
with mixed fractional Laplacians (-Δ) s 1 u+(-Δ) s 2 u+ λ u=| u| p-2 u under the constraint∫ …
Some remarks on a minimization problem associated to a fourth order nonlinear Schr\" odinger equation
N Boussaïd, AJ Fernández, L Jeanjean - arXiv preprint arXiv:1910.13177, 2019 - arxiv.org
Let $\gamma> 0\, $, $\beta> 0\, $, $\alpha> 0$ and $0<\sigma N< 4$. In the present paper,
we study, for $ c> 0$ given, the constrained minimization problem\begin {equation*}\label …
we study, for $ c> 0$ given, the constrained minimization problem\begin {equation*}\label …