Quantum error mitigation
For quantum computers to successfully solve real-world problems, it is necessary to tackle
the challenge of noise: the errors that occur in elementary physical components due to …
the challenge of noise: the errors that occur in elementary physical components due to …
[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …
received significant attention from the research community in recent years. It uses the …
A review on quantum approximate optimization algorithm and its variants
Abstract The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising
variational quantum algorithm that aims to solve combinatorial optimization problems that …
variational quantum algorithm that aims to solve combinatorial optimization problems that …
Noisy intermediate-scale quantum algorithms
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …
integer factorization and unstructured database search requires millions of qubits with low …
Materials challenges and opportunities for quantum computing hardware
BACKGROUND The past two decades have seen intense efforts aimed at building quantum
computing hardware with the potential to solve problems that are intractable on classical …
computing hardware with the potential to solve problems that are intractable on classical …
Variational quantum algorithms
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …
algebra problems are very challenging for classical computers, owing to the extremely high …
Quantum simulation for high-energy physics
It is for the first time that quantum simulation for high-energy physics (HEP) is studied in the
US decadal particle-physics community planning, and in fact until recently, this was not …
US decadal particle-physics community planning, and in fact until recently, this was not …
Connecting ansatz expressibility to gradient magnitudes and barren plateaus
Parametrized quantum circuits serve as ansatze for solving variational problems and
provide a flexible paradigm for the programming of near-term quantum computers. Ideally …
provide a flexible paradigm for the programming of near-term quantum computers. Ideally …
Power of data in quantum machine learning
The use of quantum computing for machine learning is among the most exciting prospective
applications of quantum technologies. However, machine learning tasks where data is …
applications of quantum technologies. However, machine learning tasks where data is …
Exploiting symmetry in variational quantum machine learning
Variational quantum machine learning is an extensively studied application of near-term
quantum computers. The success of variational quantum learning models crucially depends …
quantum computers. The success of variational quantum learning models crucially depends …