A review of methods for imbalanced multi-label classification
Abstract Multi-Label Classification (MLC) is an extension of the standard single-label
classification where each data instance is associated with several labels simultaneously …
classification where each data instance is associated with several labels simultaneously …
A review on multi-label learning algorithms
Multi-label learning studies the problem where each example is represented by a single
instance while associated with a set of labels simultaneously. During the past decade …
instance while associated with a set of labels simultaneously. During the past decade …
The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
Background To evaluate binary classifications and their confusion matrices, scientific
researchers can employ several statistical rates, accordingly to the goal of the experiment …
researchers can employ several statistical rates, accordingly to the goal of the experiment …
SGM: sequence generation model for multi-label classification
Multi-label classification is an important yet challenging task in natural language processing.
It is more complex than single-label classification in that the labels tend to be correlated …
It is more complex than single-label classification in that the labels tend to be correlated …
MLACO: A multi-label feature selection algorithm based on ant colony optimization
M Paniri, MB Dowlatshahi… - Knowledge-Based Systems, 2020 - Elsevier
Nowadays, with emerge the multi-label datasets, the multi-label learning processes attracted
interest and increasingly applied to different fields. In such learning processes, unlike single …
interest and increasingly applied to different fields. In such learning processes, unlike single …
An artificial intelligence-based stacked ensemble approach for prediction of protein subcellular localization in confocal microscopy images
Predicting subcellular protein localization has become a popular topic due to its utility in
understanding disease mechanisms and developing innovative drugs. With the rapid …
understanding disease mechanisms and developing innovative drugs. With the rapid …
A tutorial on multilabel learning
E Gibaja, S Ventura - ACM Computing Surveys (CSUR), 2015 - dl.acm.org
Multilabel learning has become a relevant learning paradigm in the past years due to the
increasing number of fields where it can be applied and also to the emerging number of …
increasing number of fields where it can be applied and also to the emerging number of …
A survey on multi-label feature selection from perspectives of label fusion
W Qian, J Huang, F Xu, W Shu, W Ding - Information Fusion, 2023 - Elsevier
With the rapid advancement of big data technology, high-dimensional datasets comprising
multi-label data have become prevalent in various fields. However, these datasets often …
multi-label data have become prevalent in various fields. However, these datasets often …
Learning deep latent space for multi-label classification
Multi-label classification is a practical yet challenging task in machine learning related fields,
since it requires the prediction of more than one label category for each input instance. We …
since it requires the prediction of more than one label category for each input instance. We …
[HTML][HTML] Comprehensive comparative study of multi-label classification methods
Multi-label classification (MLC) has recently attracted increasing interest in the machine
learning community. Several studies provide surveys of methods and datasets for MLC, and …
learning community. Several studies provide surveys of methods and datasets for MLC, and …