[HTML][HTML] Embracing change: Continual learning in deep neural networks
Artificial intelligence research has seen enormous progress over the past few decades, but it
predominantly relies on fixed datasets and stationary environments. Continual learning is an …
predominantly relies on fixed datasets and stationary environments. Continual learning is an …
Research progress on few-shot learning for remote sensing image interpretation
The rapid development of deep learning brings effective solutions for remote sensing image
interpretation. Training deep neural network models usually require a large number of …
interpretation. Training deep neural network models usually require a large number of …
Transformers learn in-context by gradient descent
J Von Oswald, E Niklasson… - International …, 2023 - proceedings.mlr.press
At present, the mechanisms of in-context learning in Transformers are not well understood
and remain mostly an intuition. In this paper, we suggest that training Transformers on auto …
and remain mostly an intuition. In this paper, we suggest that training Transformers on auto …
Pushing the limits of simple pipelines for few-shot learning: External data and fine-tuning make a difference
Few-shot learning (FSL) is an important and topical problem in computer vision that has
motivated extensive research into numerous methods spanning from sophisticated meta …
motivated extensive research into numerous methods spanning from sophisticated meta …
Joint distribution matters: Deep brownian distance covariance for few-shot classification
Few-shot classification is a challenging problem as only very few training examples are
given for each new task. One of the effective research lines to address this challenge …
given for each new task. One of the effective research lines to address this challenge …
Self-support few-shot semantic segmentation
Existing few-shot segmentation methods have achieved great progress based on the
support-query matching framework. But they still heavily suffer from the limited coverage of …
support-query matching framework. But they still heavily suffer from the limited coverage of …
Relational embedding for few-shot classification
We propose to address the problem of few-shot classification by meta-learning" what to
observe" and" where to attend" in a relational perspective. Our method leverages relational …
observe" and" where to attend" in a relational perspective. Our method leverages relational …
Meta-learning in neural networks: A survey
The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …
Rethinking few-shot image classification: a good embedding is all you need?
The focus of recent meta-learning research has been on the development of learning
algorithms that can quickly adapt to test time tasks with limited data and low computational …
algorithms that can quickly adapt to test time tasks with limited data and low computational …
A survey of deep meta-learning
M Huisman, JN Van Rijn, A Plaat - Artificial Intelligence Review, 2021 - Springer
Deep neural networks can achieve great successes when presented with large data sets
and sufficient computational resources. However, their ability to learn new concepts quickly …
and sufficient computational resources. However, their ability to learn new concepts quickly …