[HTML][HTML] Embracing change: Continual learning in deep neural networks

R Hadsell, D Rao, AA Rusu, R Pascanu - Trends in cognitive sciences, 2020 - cell.com
Artificial intelligence research has seen enormous progress over the past few decades, but it
predominantly relies on fixed datasets and stationary environments. Continual learning is an …

Research progress on few-shot learning for remote sensing image interpretation

X Sun, B Wang, Z Wang, H Li, H Li… - IEEE Journal of Selected …, 2021 - ieeexplore.ieee.org
The rapid development of deep learning brings effective solutions for remote sensing image
interpretation. Training deep neural network models usually require a large number of …

Transformers learn in-context by gradient descent

J Von Oswald, E Niklasson… - International …, 2023 - proceedings.mlr.press
At present, the mechanisms of in-context learning in Transformers are not well understood
and remain mostly an intuition. In this paper, we suggest that training Transformers on auto …

Pushing the limits of simple pipelines for few-shot learning: External data and fine-tuning make a difference

SX Hu, D Li, J Stühmer, M Kim… - Proceedings of the …, 2022 - openaccess.thecvf.com
Few-shot learning (FSL) is an important and topical problem in computer vision that has
motivated extensive research into numerous methods spanning from sophisticated meta …

Joint distribution matters: Deep brownian distance covariance for few-shot classification

J Xie, F Long, J Lv, Q Wang… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Few-shot classification is a challenging problem as only very few training examples are
given for each new task. One of the effective research lines to address this challenge …

Self-support few-shot semantic segmentation

Q Fan, W Pei, YW Tai, CK Tang - European Conference on Computer …, 2022 - Springer
Existing few-shot segmentation methods have achieved great progress based on the
support-query matching framework. But they still heavily suffer from the limited coverage of …

Relational embedding for few-shot classification

D Kang, H Kwon, J Min, M Cho - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
We propose to address the problem of few-shot classification by meta-learning" what to
observe" and" where to attend" in a relational perspective. Our method leverages relational …

Meta-learning in neural networks: A survey

T Hospedales, A Antoniou, P Micaelli… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …

Rethinking few-shot image classification: a good embedding is all you need?

Y Tian, Y Wang, D Krishnan, JB Tenenbaum… - Computer Vision–ECCV …, 2020 - Springer
The focus of recent meta-learning research has been on the development of learning
algorithms that can quickly adapt to test time tasks with limited data and low computational …

A survey of deep meta-learning

M Huisman, JN Van Rijn, A Plaat - Artificial Intelligence Review, 2021 - Springer
Deep neural networks can achieve great successes when presented with large data sets
and sufficient computational resources. However, their ability to learn new concepts quickly …