Deep learning for detecting multi-level driver fatigue using physiological signals: A comprehensive approach

M Peivandi, SZ Ardabili, S Sheykhivand, S Danishvar - Sensors, 2023 - mdpi.com
A large share of traffic accidents is related to driver fatigue. In recent years, many studies
have been organized in order to diagnose and warn drivers. In this research, a new …

[PDF][PDF] Jestr r

AJ Saeed, AA Hashim - Journal of Engineering Science and Technology …, 2023 - jestr.org
GAN (Generative adversarial network) is a type of deep learning model that can generate
fake data that looks real. GAN consists of two rival neural networks generator and …

[PDF][PDF] Inteligencia Artificial Profunda y Ciencias Sociales Adversarias en el siglo XXI. Nuevos modelos de Redes Neuronales Convolucionales

C Reynoso - 2023 - academia.edu
Although this book is not an ethnography, it has an ethnographic situation. If it has a field
site, then it lies close to the places where the writing was done–in universities, on campuses …

Artificial Intelligence in Pediatric Surgery: A Systematic Review

MO Elahmedi - 2024 - search.proquest.com
Background Amidst considerable enthusiasm surrounding the integration of artificial
intelligence (AI) across various sectors, meaningful roles for AI in multifaceted healthcare …

Desarrollo de una aplicación web que genere rostros de personas que no existen en el mundo real

M Quezada-García… - … American Journal of …, 2024 - tech.iberojournals.com
Con el creciente desarrollo de la Generative Adversarial Network (GAN), la generación de
imágenes son un desafío emocionante en el campo del aprendizaje profundo y la …

Image Generation from Random Noise using Generative Adversarial Networks

K Meshram, H Jadhav, N Narsale… - 2023 International …, 2023 - ieeexplore.ieee.org
Generative Adversarial Networks (GAN) are an exciting and rapidly changing field that
promises to generate realistic samples across a range of domains. They generate new and …