[HTML][HTML] Machine learning for a sustainable energy future

Z Yao, Y Lum, A Johnston, LM Mejia-Mendoza… - Nature Reviews …, 2023 - nature.com
Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it
demands advances—at the materials, devices and systems levels—for the efficient …

[HTML][HTML] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions

L Alzubaidi, J Zhang, AJ Humaidi, A Al-Dujaili… - Journal of big Data, 2021 - Springer
In the last few years, the deep learning (DL) computing paradigm has been deemed the
Gold Standard in the machine learning (ML) community. Moreover, it has gradually become …

Pythia: A suite for analyzing large language models across training and scaling

S Biderman, H Schoelkopf… - International …, 2023 - proceedings.mlr.press
How do large language models (LLMs) develop and evolve over the course of training?
How do these patterns change as models scale? To answer these questions, we introduce …

Google scanned objects: A high-quality dataset of 3d scanned household items

L Downs, A Francis, N Koenig, B Kinman… - … on Robotics and …, 2022 - ieeexplore.ieee.org
Interactive 3D simulations have enabled break-throughs in robotics and computer vision, but
simulating the broad diversity of environments needed for deep learning requires large …

[图书][B] Towards a standard for identifying and managing bias in artificial intelligence

R Schwartz, R Schwartz, A Vassilev, K Greene… - 2022 - dwt.com
As individuals and communities interact in and with an environment that is increasingly
virtual, they are often vulnerable to the commodification of their digital footprint. Concepts …

Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging

S Azizi, L Culp, J Freyberg, B Mustafa, S Baur… - Nature Biomedical …, 2023 - nature.com
Abstract Machine-learning models for medical tasks can match or surpass the performance
of clinical experts. However, in settings differing from those of the training dataset, the …

Robust fine-tuning of zero-shot models

M Wortsman, G Ilharco, JW Kim, M Li… - Proceedings of the …, 2022 - openaccess.thecvf.com
Large pre-trained models such as CLIP or ALIGN offer consistent accuracy across a range of
data distributions when performing zero-shot inference (ie, without fine-tuning on a specific …

Dawn of the transformer era in speech emotion recognition: closing the valence gap

J Wagner, A Triantafyllopoulos… - … on Pattern Analysis …, 2023 - ieeexplore.ieee.org
Recent advances in transformer-based architectures have shown promise in several
machine learning tasks. In the audio domain, such architectures have been successfully …

Interpretable machine learning: Fundamental principles and 10 grand challenges

C Rudin, C Chen, Z Chen, H Huang… - Statistic …, 2022 - projecteuclid.org
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …

Learning transferable visual models from natural language supervision

A Radford, JW Kim, C Hallacy… - International …, 2021 - proceedings.mlr.press
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined
object categories. This restricted form of supervision limits their generality and usability since …