lifex-cfd: An open-source computational fluid dynamics solver for cardiovascular applications

PC Africa, I Fumagalli, M Bucelli, A Zingaro… - Computer Physics …, 2024 - Elsevier
Computational fluid dynamics (CFD) is an important tool for the simulation of the
cardiovascular function and dysfunction. Due to the complexity of the anatomy, the …

lifex-ep: a robust and efficient software for cardiac electrophysiology simulations

PC Africa, R Piersanti, F Regazzoni, M Bucelli… - BMC …, 2023 - Springer
Background Simulating the cardiac function requires the numerical solution of multi-physics
and multi-scale mathematical models. This underscores the need for streamlined, accurate …

Fast and robust parameter estimation with uncertainty quantification for the cardiac function

M Salvador, F Regazzoni, A Quarteroni - Computer Methods and …, 2023 - Elsevier
Background and objectives Parameter estimation and uncertainty quantification are crucial
in computational cardiology, as they enable the construction of digital twins that faithfully …

[HTML][HTML] Uncertainty quantification for nonlinear solid mechanics using reduced order models with Gaussian process regression

L Cicci, S Fresca, M Guo, A Manzoni… - Computers & Mathematics …, 2023 - Elsevier
Uncertainty quantification (UQ) tasks, such as sensitivity analysis and parameter estimation,
entail a huge computational complexity when dealing with input-output maps involving the …

Whole-heart electromechanical simulations using Latent Neural Ordinary Differential Equations

M Salvador, M Strocchi, F Regazzoni… - NPJ Digital …, 2024 - nature.com
Cardiac digital twins provide a physics and physiology informed framework to deliver
personalized medicine. However, high-fidelity multi-scale cardiac models remain a barrier to …

Branched latent neural maps

M Salvador, AL Marsden - Computer Methods in Applied Mechanics and …, 2024 - Elsevier
Abstract We introduce Branched Latent Neural Maps (BLNMs) to learn finite dimensional
input–output maps encoding complex physical processes. A BLNM is defined by a simple …

[HTML][HTML] Proper orthogonal decomposition method of constructing a reduced-order model for solving partial differential equations with parametrized initial values

Y Nakamura, S Sato, N Ohnishi - Partial Differential Equations in Applied …, 2024 - Elsevier
This paper proposes a novel proper orthogonal decomposition method for constructing a
reduced-order model. This model effectively computes solutions for various initial conditions …

Real-time whole-heart electromechanical simulations using latent neural ordinary differential equations

M Salvador, M Strocchi, F Regazzoni, L Dede… - arXiv preprint arXiv …, 2023 - arxiv.org
Cardiac digital twins provide a physics and physiology informed framework to deliver
predictive and personalized medicine. However, high-fidelity multi-scale cardiac models …

A non-conforming-in-space numerical framework for realistic cardiac electrophysiological outputs

E Zappon, A Manzoni, A Quarteroni - Journal of Computational Physics, 2024 - Elsevier
Computer-based simulations of non-invasive cardiac electrophysiological outputs, such as
electrocardiograms and body surface potential maps, usually entail severe computational …

Branched Latent Neural Operators

M Salvador, AL Marsden - arXiv preprint arXiv:2308.02599, 2023 - arxiv.org
We introduce Branched Latent Neural Operators (BLNOs) to learn input-output maps
encoding complex physical processes. A BLNO is defined by a simple and compact …