Sensor-based and vision-based human activity recognition: A comprehensive survey

LM Dang, K Min, H Wang, MJ Piran, CH Lee, H Moon - Pattern Recognition, 2020 - Elsevier
Human activity recognition (HAR) technology that analyzes data acquired from various types
of sensing devices, including vision sensors and embedded sensors, has motivated the …

A review on the long short-term memory model

G Van Houdt, C Mosquera, G Nápoles - Artificial Intelligence Review, 2020 - Springer
Long short-term memory (LSTM) has transformed both machine learning and
neurocomputing fields. According to several online sources, this model has improved …

Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks

S Ghimire, ZM Yaseen, AA Farooque, RC Deo… - Scientific Reports, 2021 - nature.com
Streamflow (Q flow) prediction is one of the essential steps for the reliable and robust water
resources planning and management. It is highly vital for hydropower operation, agricultural …

Bidirectional LSTM with attention mechanism and convolutional layer for text classification

G Liu, J Guo - Neurocomputing, 2019 - Elsevier
Neural network models have been widely used in the field of natural language processing
(NLP). Recurrent neural networks (RNNs), which have the ability to process sequences of …

Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects

MM Islam, S Nooruddin, F Karray… - Computers in biology and …, 2022 - Elsevier
Abstract Human Activity Recognition (HAR) plays a significant role in the everyday life of
people because of its ability to learn extensive high-level information about human activity …

Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms

S Ghimire, RC Deo, N Raj, J Mi - Applied Energy, 2019 - Elsevier
This paper designs a hybridized deep learning framework that integrates the Convolutional
Neural Network for pattern recognition with the Long Short-Term Memory Network for half …

Human action recognition: A taxonomy-based survey, updates, and opportunities

MG Morshed, T Sultana, A Alam, YK Lee - Sensors, 2023 - mdpi.com
Human action recognition systems use data collected from a wide range of sensors to
accurately identify and interpret human actions. One of the most challenging issues for …

Deep learning-based approach for sign language gesture recognition with efficient hand gesture representation

M Al-Hammadi, G Muhammad, W Abdul… - Ieee …, 2020 - ieeexplore.ieee.org
Hand gesture recognition is an attractive research field with a wide range of applications,
including video games and telesurgery techniques. Another important application of hand …

Dynamic hand gesture recognition using multi-branch attention based graph and general deep learning model

ASM Miah, MAM Hasan, J Shin - IEEE Access, 2023 - ieeexplore.ieee.org
The dynamic hand skeleton data have become increasingly attractive to widely studied for
the recognition of hand gestures that contain 3D coordinates of hand joints. Many …

Temporal decoupling graph convolutional network for skeleton-based gesture recognition

J Liu, X Wang, C Wang, Y Gao… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Skeleton-based gesture recognition methods have achieved high success using Graph
Convolutional Network (GCN), which commonly uses an adjacency matrix to model the …