A comprehensive overview of large language models

H Naveed, AU Khan, S Qiu, M Saqib, S Anwar… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in
natural language processing tasks and beyond. This success of LLMs has led to a large …

[HTML][HTML] A survey on large language model (llm) security and privacy: The good, the bad, and the ugly

Y Yao, J Duan, K Xu, Y Cai, Z Sun, Y Zhang - High-Confidence Computing, 2024 - Elsevier
Abstract Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized
natural language understanding and generation. They possess deep language …

Lamda: Language models for dialog applications

R Thoppilan, D De Freitas, J Hall, N Shazeer… - arXiv preprint arXiv …, 2022 - arxiv.org
We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of
Transformer-based neural language models specialized for dialog, which have up to 137B …

Gptfuzzer: Red teaming large language models with auto-generated jailbreak prompts

J Yu, X Lin, Z Yu, X Xing - arXiv preprint arXiv:2309.10253, 2023 - arxiv.org
Large language models (LLMs) have recently experienced tremendous popularity and are
widely used from casual conversations to AI-driven programming. However, despite their …

Prompt Injection attack against LLM-integrated Applications

Y Liu, G Deng, Y Li, K Wang, Z Wang, X Wang… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs), renowned for their superior proficiency in language
comprehension and generation, stimulate a vibrant ecosystem of applications around them …

Large language models: a comprehensive survey of its applications, challenges, limitations, and future prospects

MU Hadi, Q Al Tashi, A Shah, R Qureshi… - Authorea …, 2024 - authorea.com
Within the vast expanse of computerized language processing, a revolutionary entity known
as Large Language Models (LLMs) has emerged, wielding immense power in its capacity to …

A survey on data augmentation for text classification

M Bayer, MA Kaufhold, C Reuter - ACM Computing Surveys, 2022 - dl.acm.org
Data augmentation, the artificial creation of training data for machine learning by
transformations, is a widely studied research field across machine learning disciplines …

Making the most of text semantics to improve biomedical vision–language processing

B Boecking, N Usuyama, S Bannur, DC Castro… - European conference on …, 2022 - Springer
Multi-modal data abounds in biomedicine, such as radiology images and reports.
Interpreting this data at scale is essential for improving clinical care and accelerating clinical …

Smoothllm: Defending large language models against jailbreaking attacks

A Robey, E Wong, H Hassani, GJ Pappas - arXiv preprint arXiv …, 2023 - arxiv.org
Despite efforts to align large language models (LLMs) with human values, widely-used
LLMs such as GPT, Llama, Claude, and PaLM are susceptible to jailbreaking attacks …

Domain-specific language model pretraining for biomedical natural language processing

Y Gu, R Tinn, H Cheng, M Lucas, N Usuyama… - ACM Transactions on …, 2021 - dl.acm.org
Pretraining large neural language models, such as BERT, has led to impressive gains on
many natural language processing (NLP) tasks. However, most pretraining efforts focus on …