Assorted exact explicit solutions for the generalized Atangana's fractional BBM–Burgers equation with the dissipative term
B Hong - Frontiers in Physics, 2022 - frontiersin.org
In this study, the generalized Atangana's fractional BBM–Burgers equation (GBBM-B) with
the dissipative term is investigated by utilizing the modified sub-equation method and the …
the dissipative term is investigated by utilizing the modified sub-equation method and the …
Solitons, Lumps, breathers and rouge wave solutions to the (3+ 1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt model
The mixed localized wave solutions and their interaction have fascinated the vast age of
plasma physics, fluid mechanics, and ocean dynamics, thanks to advances in nonlinear …
plasma physics, fluid mechanics, and ocean dynamics, thanks to advances in nonlinear …
Soliton, lumps, stability analysis and modulation instability for an extended (2+ 1)-dimensional Boussinesq model in shallow water
F Badshah, KU Tariq, H Ilyas, RN Tufail - Chaos, Solitons & Fractals, 2024 - Elsevier
In this work, we study the extended (2+ 1)-dimensional Boussinesq model, which describes
the propagation of waves with small amplitudes in shallow water propagating at a constant …
the propagation of waves with small amplitudes in shallow water propagating at a constant …
Multi-soliton solutions and data-driven discovery of higher-order Burgers' hierarchy equations with physics informed neural networks
The Burgers hierarchy consists of nonlinear evolutionary PDEs with increasingly higher-
order dispersive and nonlinear terms, resulting in a rich variety of soliton solutions. Notable …
order dispersive and nonlinear terms, resulting in a rich variety of soliton solutions. Notable …
Symmetry reductions and conservation laws of a modified-mixed KdV equation: exploring new interaction solutions
N Raza, ML Gandarias Núñez, GA Basendwah - 2024 - rodin.uca.es
This article represented the investigation of the modified mixed Korteweg-de Vries equation
using di erent versatile approaches. First, the Lie point symmetry approach was used to …
using di erent versatile approaches. First, the Lie point symmetry approach was used to …
Lie symmetry analysis, optimal system and exact solutions of variable-coefficients Sakovich equation
Y Hu, F Zhang, X Xin - Journal of Geometry and Physics, 2023 - Elsevier
In this paper, the Sakovich equation is extended for the first time to a new equation with
variable-coefficients on the time variable. The infinitesimal generators are obtained by …
variable-coefficients on the time variable. The infinitesimal generators are obtained by …
Soliton solutions for a (3+ 1)-dimensional nonlinear integrable equation
S Wang - Optical and Quantum Electronics, 2023 - Springer
In order to obtain the local structural solutions of nonlinear integrable systems, a (3+ 1)-
dimensional nonlinear integrable equation is studied by using the multi-linear variable …
dimensional nonlinear integrable equation is studied by using the multi-linear variable …
Constructing exact solutions to systems of reaction-diffusion equations
Many generalizations have been considered on how to construct the exact solutions of one-
component Reaction-Diffusion (RD) equations. Two-component RD systems of equations …
component Reaction-Diffusion (RD) equations. Two-component RD systems of equations …
[PDF][PDF] On construction of exact solutions of delay reaction-diffusion systems
Several physical phenomena are governed by mathematical models and can be structured
by the Reaction-Diffusion (RD) systems. RD systems are essential for the description of …
by the Reaction-Diffusion (RD) systems. RD systems are essential for the description of …