Distributionally robust optimization: A review
H Rahimian, S Mehrotra - arXiv preprint arXiv:1908.05659, 2019 - arxiv.org
The concepts of risk-aversion, chance-constrained optimization, and robust optimization
have developed significantly over the last decade. Statistical learning community has also …
have developed significantly over the last decade. Statistical learning community has also …
Frameworks and results in distributionally robust optimization
H Rahimian, S Mehrotra - Open Journal of Mathematical Optimization, 2022 - numdam.org
The concepts of risk aversion, chance-constrained optimization, and robust optimization
have developed significantly over the last decade. The statistical learning community has …
have developed significantly over the last decade. The statistical learning community has …
Towards out-of-distribution generalization: A survey
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …
test data follow the same statistical pattern, which is mathematically referred to as …
Wasserstein distributionally robust optimization: Theory and applications in machine learning
Many decision problems in science, engineering, and economics are affected by uncertain
parameters whose distribution is only indirectly observable through samples. The goal of …
parameters whose distribution is only indirectly observable through samples. The goal of …
Certifying some distributional robustness with principled adversarial training
Neural networks are vulnerable to adversarial examples and researchers have proposed
many heuristic attack and defense mechanisms. We address this problem through the …
many heuristic attack and defense mechanisms. We address this problem through the …
Quantifying distributional model risk via optimal transport
J Blanchet, K Murthy - Mathematics of Operations Research, 2019 - pubsonline.informs.org
This paper deals with the problem of quantifying the impact of model misspecification when
computing general expected values of interest. The methodology that we propose is …
computing general expected values of interest. The methodology that we propose is …
Towards a theoretical framework of out-of-distribution generalization
Generalization to out-of-distribution (OOD) data is one of the central problems in modern
machine learning. Recently, there is a surge of attempts to propose algorithms that mainly …
machine learning. Recently, there is a surge of attempts to propose algorithms that mainly …
Regularization via mass transportation
S Shafieezadeh-Abadeh, D Kuhn… - Journal of Machine …, 2019 - jmlr.org
The goal of regression and classification methods in supervised learning is to minimize the
empirical risk, that is, the expectation of some loss function quantifying the prediction error …
empirical risk, that is, the expectation of some loss function quantifying the prediction error …
Distributionally robust optimization and generalization in kernel methods
Distributionally robust optimization (DRO) has attracted attention in machine learning due to
its connections to regularization, generalization, and robustness. Existing work has …
its connections to regularization, generalization, and robustness. Existing work has …
Distributionally robust learning
R Chen, IC Paschalidis - Foundations and Trends® in …, 2020 - nowpublishers.com
This monograph develops a comprehensive statistical learning framework that is robust to
(distributional) perturbations in the data using Distributionally Robust Optimization (DRO) …
(distributional) perturbations in the data using Distributionally Robust Optimization (DRO) …