Unsupervised domain adaptation in semantic segmentation: a review
The aim of this paper is to give an overview of the recent advancements in the Unsupervised
Domain Adaptation (UDA) of deep networks for semantic segmentation. This task is …
Domain Adaptation (UDA) of deep networks for semantic segmentation. This task is …
Semantic image segmentation: Two decades of research
Semantic image segmentation (SiS) plays a fundamental role in a broad variety of computer
vision applications, providing key information for the global understanding of an image. This …
vision applications, providing key information for the global understanding of an image. This …
Daformer: Improving network architectures and training strategies for domain-adaptive semantic segmentation
As acquiring pixel-wise annotations of real-world images for semantic segmentation is a
costly process, a model can instead be trained with more accessible synthetic data and …
costly process, a model can instead be trained with more accessible synthetic data and …
Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation
Self-training is a competitive approach in domain adaptive segmentation, which trains the
network with the pseudo labels on the target domain. However inevitably, the pseudo labels …
network with the pseudo labels on the target domain. However inevitably, the pseudo labels …
Self-supervised augmentation consistency for adapting semantic segmentation
N Araslanov, S Roth - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
We propose an approach to domain adaptation for semantic segmentation that is both
practical and highly accurate. In contrast to previous work, we abandon the use of …
practical and highly accurate. In contrast to previous work, we abandon the use of …
Instance adaptive self-training for unsupervised domain adaptation
The divergence between labeled training data and unlabeled testing data is a significant
challenge for recent deep learning models. Unsupervised domain adaptation (UDA) …
challenge for recent deep learning models. Unsupervised domain adaptation (UDA) …
Where and how to transfer: Knowledge aggregation-induced transferability perception for unsupervised domain adaptation
Unsupervised domain adaptation without accessing expensive annotation processes of
target data has achieved remarkable successes in semantic segmentation. However, most …
target data has achieved remarkable successes in semantic segmentation. However, most …
Generalize then adapt: Source-free domain adaptive semantic segmentation
JN Kundu, A Kulkarni, A Singh… - Proceedings of the …, 2021 - openaccess.thecvf.com
Unsupervised domain adaptation (DA) has gained substantial interest in semantic
segmentation. However, almost all prior arts assume concurrent access to both labeled …
segmentation. However, almost all prior arts assume concurrent access to both labeled …
Unsupervised domain adaptation of object detectors: A survey
P Oza, VA Sindagi, VV Sharmini… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Recent advances in deep learning have led to the development of accurate and efficient
models for various computer vision applications such as classification, segmentation, and …
models for various computer vision applications such as classification, segmentation, and …
Differential treatment for stuff and things: A simple unsupervised domain adaptation method for semantic segmentation
We consider the problem of unsupervised domain adaptation for semantic segmentation by
easing the domain shift between the source domain (synthetic data) and the target domain …
easing the domain shift between the source domain (synthetic data) and the target domain …