Artificial intelligence in histopathology: enhancing cancer research and clinical oncology

A Shmatko, N Ghaffari Laleh, M Gerstung, JN Kather - Nature cancer, 2022 - nature.com
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative
information from digital histopathology images. AI is expected to reduce workload for human …

Tumour-infiltrating lymphocytes: from prognosis to treatment selection

K Brummel, AL Eerkens, M de Bruyn… - British Journal of …, 2023 - nature.com
Tumour-infiltrating lymphocytes (TILs) are considered crucial in anti-tumour immunity.
Accordingly, the presence of TILs contains prognostic and predictive value. In 2011, we …

Swarm learning for decentralized artificial intelligence in cancer histopathology

OL Saldanha, P Quirke, NP West, JA James… - Nature medicine, 2022 - nature.com
Artificial intelligence (AI) can predict the presence of molecular alterations directly from
routine histopathology slides. However, training robust AI systems requires large datasets …

Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology

NG Laleh, HS Muti, CML Loeffler, A Echle… - Medical image …, 2022 - Elsevier
Artificial intelligence (AI) can extract visual information from histopathological slides and
yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of …

Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study

SJ Wagner, D Reisenbüchler, NP West, JM Niehues… - Cancer Cell, 2023 - cell.com
Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine
pathology slides in colorectal cancer (CRC). However, current approaches rely on …

Artificial intelligence to identify genetic alterations in conventional histopathology

D Cifci, S Foersch, JN Kather - The Journal of Pathology, 2022 - Wiley Online Library
Precision oncology relies on the identification of targetable molecular alterations in tumor
tissues. In many tumor types, a limited set of molecular tests is currently part of standard …

Adversarial attacks and adversarial robustness in computational pathology

N Ghaffari Laleh, D Truhn, GP Veldhuizen… - Nature …, 2022 - nature.com
Artificial Intelligence (AI) can support diagnostic workflows in oncology by aiding diagnosis
and providing biomarkers directly from routine pathology slides. However, AI applications …

Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study

JM Niehues, P Quirke, NP West, HI Grabsch… - Cell reports …, 2023 - cell.com
Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology
slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other …

Multimodal deep learning for integrating chest radiographs and clinical parameters: a case for transformers

F Khader, G Müller-Franzes, T Wang, T Han… - Radiology, 2023 - pubs.rsna.org
Background Clinicians consider both imaging and nonimaging data when diagnosing
diseases; however, current machine learning approaches primarily consider data from a …

Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images

W Wang, Y Zhao, L Teng, J Yan, Y Guo, Y Qiu… - Nature …, 2023 - nature.com
Current diagnosis of glioma types requires combining both histological features and
molecular characteristics, which is an expensive and time-consuming procedure …