[PDF][PDF] Deep unsupervised domain adaptation: A review of recent advances and perspectives
Deep learning has become the method of choice to tackle real-world problems in different
domains, partly because of its ability to learn from data and achieve impressive performance …
domains, partly because of its ability to learn from data and achieve impressive performance …
How to train your robot with deep reinforcement learning: lessons we have learned
Deep reinforcement learning (RL) has emerged as a promising approach for autonomously
acquiring complex behaviors from low-level sensor observations. Although a large portion of …
acquiring complex behaviors from low-level sensor observations. Although a large portion of …
Open x-embodiment: Robotic learning datasets and rt-x models
Large, high-capacity models trained on diverse datasets have shown remarkable successes
on efficiently tackling downstream applications. In domains from NLP to Computer Vision …
on efficiently tackling downstream applications. In domains from NLP to Computer Vision …
Open X-Embodiment: Robotic Learning Datasets and RT-X Models : Open X-Embodiment Collaboration0
Large, high-capacity models trained on diverse datasets have shown remarkable successes
on efficiently tackling downstream applications. In domains from NLP to Computer Vision …
on efficiently tackling downstream applications. In domains from NLP to Computer Vision …
Google scanned objects: A high-quality dataset of 3d scanned household items
Interactive 3D simulations have enabled break-throughs in robotics and computer vision, but
simulating the broad diversity of environments needed for deep learning requires large …
simulating the broad diversity of environments needed for deep learning requires large …
A comprehensive review of digital twin—part 1: modeling and twinning enabling technologies
As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented
attention because of its promise to further optimize process design, quality control, health …
attention because of its promise to further optimize process design, quality control, health …
Sim-to-real transfer in deep reinforcement learning for robotics: a survey
W Zhao, JP Queralta… - 2020 IEEE symposium …, 2020 - ieeexplore.ieee.org
Deep reinforcement learning has recently seen huge success across multiple areas in the
robotics domain. Owing to the limitations of gathering real-world data, ie, sample inefficiency …
robotics domain. Owing to the limitations of gathering real-world data, ie, sample inefficiency …
Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things
In the Internet-of-Things (IoT) era, billions of sensors and devices collect and process data
from the environment, transmit them to cloud centers, and receive feedback via the Internet …
from the environment, transmit them to cloud centers, and receive feedback via the Internet …
Transfer learning in deep reinforcement learning: A survey
Reinforcement learning is a learning paradigm for solving sequential decision-making
problems. Recent years have witnessed remarkable progress in reinforcement learning …
problems. Recent years have witnessed remarkable progress in reinforcement learning …
Deep reinforcement learning for autonomous driving: A survey
With the development of deep representation learning, the domain of reinforcement learning
(RL) has become a powerful learning framework now capable of learning complex policies …
(RL) has become a powerful learning framework now capable of learning complex policies …