Large deviations, dynamics and phase transitions in large stochastic and disordered neural networks

T Cabana, J Touboul - Journal of Statistical Physics, 2013 - Springer
Neuronal networks are characterized by highly heterogeneous connectivity, and this
disorder was recently related experimentally to qualitative properties of the network. The …

Random recurrent neural networks dynamics

M Samuelides, B Cessac - The European Physical Journal Special Topics, 2007 - Springer
This paper is a review dealing with the study of large size random recurrent neural networks.
The connection weights are varying according to a probability law and it is possible to …

Large deviations for randomly connected neural networks: I. Spatially extended systems

T Cabana, JD Touboul - Advances in applied probability, 2018 - cambridge.org
In a series of two papers, we investigate the large deviations and asymptotic behavior of
stochastic models of brain neural networks with random interaction coefficients. In this first …

Resonant spatiotemporal learning in large random recurrent networks

E Dauce, M Quoy, B Doyon - Biological Cybernetics, 2002 - Springer
Taking a global analogy with the structure of perceptual biological systems, we present a
system composed of two layers of real-valued sigmoidal neurons. The primary layer …

Neurodynamische Module zur Bewegungssteuerung autonomer mobiler Roboter

M Hild - 2008 - edoc.hu-berlin.de
In der vorliegenden Arbeit werden rekurrente neuronale Netze im Hinblick auf ihre Eignung
zur Bewegungssteuerung autonomer Roboter untersucht. Nacheinander werden …

L'intelligence en essaim sous l'angle des systèmes complexes: étude d'un système multi-agent réactif à base d'itérations logistiques couplées

R Charrier - 2009 - theses.hal.science
L'intelligence en essaim constitue désormais un domaine à part entière de l'intelligence
artificielle distribuée. Les problématiques qu'elle soulève touchent cependant à de …

[PDF][PDF] Hebbian learning in large recurrent neural networks

E Daucé, F Henry - Movement and Perception Lab, Marseille, 2006 - neuro.bstu.by
This paper presents the guidelines of an ongoing project of the" Movement Dynamics" team
in the “Movement and perception” Lab, UMR6152, Marseille. We address the question of …

Learning and control with large dynamic neural networks

E Daucé - The European Physical Journal Special Topics, 2007 - Springer
This paper is a presentation of neuronal control systems in the terms of the dynamical
systems theory, where (1) the controller and its surrounding environment are seen as two co …

[PDF][PDF] Mean field theory for random recurrent spiking neural networks

B Cessac, O Mazet, M Samuelides, H Soula - NOLTA, 2005 - academia.edu
Recurrent spiking neural networks can provide biologically inspired model of robot
controller. We study here the dynamics of large size randomly connected networks thanks …

Asymptotic behavior and synchronizability characteristics of a class of recurrent neural networks

C Cebulla - Neural computation, 2007 - ieeexplore.ieee.org
We propose an approach to the analysis of the influence of the topology of a neural network
on its synchronizability in the sense of equal output activity rates given by a particular neural …