A comprehensive survey on source-free domain adaptation

J Li, Z Yu, Z Du, L Zhu, HT Shen - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Over the past decade, domain adaptation has become a widely studied branch of transfer
learning which aims to improve performance on target domains by leveraging knowledge …

Transfer learning-based state of charge and state of health estimation for Li-ion batteries: A review

L Shen, J Li, L Meng, L Zhu… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
State of charge (SOC) and state of health (SOH) estimation play a vital role in battery
management systems (BMSs). Accurate and robust state estimation can prevent Li-ion …

Where and how to transfer: Knowledge aggregation-induced transferability perception for unsupervised domain adaptation

J Dong, Y Cong, G Sun, Z Fang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Unsupervised domain adaptation without accessing expensive annotation processes of
target data has achieved remarkable successes in semantic segmentation. However, most …

Cross-domain gradient discrepancy minimization for unsupervised domain adaptation

Z Du, J Li, H Su, L Zhu, K Lu - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Abstract Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned
from a well-labeled source domain to an unlabled target domain. Recently, adversarial …

Connect, not collapse: Explaining contrastive learning for unsupervised domain adaptation

K Shen, RM Jones, A Kumar, SM Xie… - International …, 2022 - proceedings.mlr.press
We consider unsupervised domain adaptation (UDA), where labeled data from a source
domain (eg, photos) and unlabeled data from a target domain (eg, sketches) are used to …

A survey of transfer learning for machinery diagnostics and prognostics

S Yao, Q Kang, MC Zhou, MJ Rawa… - Artificial Intelligence …, 2023 - Springer
In industrial manufacturing systems, failures of machines caused by faults in their key
components greatly influence operational safety and system reliability. Many data-driven …

Domain adaptation with auxiliary target domain-oriented classifier

J Liang, D Hu, J Feng - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Abstract Domain adaptation (DA) aims to transfer knowledge from a label-rich but
heterogeneous domain to a label-scare domain, which alleviates the labeling efforts and …

Multi-source unsupervised domain adaptation via pseudo target domain

CX Ren, YH Liu, XW Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Multi-source domain adaptation (MDA) aims to transfer knowledge from multiple source
domains to an unlabeled target domain. MDA is a challenging task due to the severe …

Divergence-agnostic unsupervised domain adaptation by adversarial attacks

J Li, Z Du, L Zhu, Z Ding, K Lu… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Conventional machine learning algorithms suffer the problem that the model trained on
existing data fails to generalize well to the data sampled from other distributions. To tackle …

Discriminative manifold distribution alignment for domain adaptation

SY Yao, Q Kang, MC Zhou, MJ Rawa… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Domain adaptation (DA) aims to accomplish tasks on unlabeled target data by learning and
transferring knowledge from related source domains. In order to learn a discriminative and …