Graph neural networks in recommender systems: a survey

S Wu, F Sun, W Zhang, X Xie, B Cui - ACM Computing Surveys, 2022 - dl.acm.org
With the explosive growth of online information, recommender systems play a key role to
alleviate such information overload. Due to the important application value of recommender …

Multimodal learning with graphs

Y Ektefaie, G Dasoulas, A Noori, M Farhat… - Nature Machine …, 2023 - nature.com
Artificial intelligence for graphs has achieved remarkable success in modelling complex
systems, ranging from dynamic networks in biology to interacting particle systems in physics …

Voxposer: Composable 3d value maps for robotic manipulation with language models

W Huang, C Wang, R Zhang, Y Li, J Wu… - arXiv preprint arXiv …, 2023 - arxiv.org
Large language models (LLMs) are shown to possess a wealth of actionable knowledge that
can be extracted for robot manipulation in the form of reasoning and planning. Despite the …

Planning with diffusion for flexible behavior synthesis

M Janner, Y Du, JB Tenenbaum, S Levine - arXiv preprint arXiv …, 2022 - arxiv.org
Model-based reinforcement learning methods often use learning only for the purpose of
estimating an approximate dynamics model, offloading the rest of the decision-making work …

Open x-embodiment: Robotic learning datasets and rt-x models

A Padalkar, A Pooley, A Jain, A Bewley… - arXiv preprint arXiv …, 2023 - arxiv.org
Large, high-capacity models trained on diverse datasets have shown remarkable successes
on efficiently tackling downstream applications. In domains from NLP to Computer Vision …

Learning mesh-based simulation with graph networks

T Pfaff, M Fortunato, A Sanchez-Gonzalez… - arXiv preprint arXiv …, 2020 - arxiv.org
Mesh-based simulations are central to modeling complex physical systems in many
disciplines across science and engineering. Mesh representations support powerful …

Contrastive multi-view representation learning on graphs

K Hassani, AH Khasahmadi - International conference on …, 2020 - proceedings.mlr.press
We introduce a self-supervised approach for learning node and graph level representations
by contrasting structural views of graphs. We show that unlike visual representation learning …

Learning to simulate complex physics with graph networks

A Sanchez-Gonzalez, J Godwin… - International …, 2020 - proceedings.mlr.press
Here we present a machine learning framework and model implementation that can learn to
simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and …

Benchmarking graph neural networks

VP Dwivedi, CK Joshi, AT Luu, T Laurent… - Journal of Machine …, 2023 - jmlr.org
In the last few years, graph neural networks (GNNs) have become the standard toolkit for
analyzing and learning from data on graphs. This emerging field has witnessed an extensive …

Discovering symbolic models from deep learning with inductive biases

M Cranmer, A Sanchez Gonzalez… - Advances in neural …, 2020 - proceedings.neurips.cc
We develop a general approach to distill symbolic representations of a learned deep model
by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The …