Graph neural networks in recommender systems: a survey
With the explosive growth of online information, recommender systems play a key role to
alleviate such information overload. Due to the important application value of recommender …
alleviate such information overload. Due to the important application value of recommender …
Multimodal learning with graphs
Artificial intelligence for graphs has achieved remarkable success in modelling complex
systems, ranging from dynamic networks in biology to interacting particle systems in physics …
systems, ranging from dynamic networks in biology to interacting particle systems in physics …
Voxposer: Composable 3d value maps for robotic manipulation with language models
Large language models (LLMs) are shown to possess a wealth of actionable knowledge that
can be extracted for robot manipulation in the form of reasoning and planning. Despite the …
can be extracted for robot manipulation in the form of reasoning and planning. Despite the …
Planning with diffusion for flexible behavior synthesis
Model-based reinforcement learning methods often use learning only for the purpose of
estimating an approximate dynamics model, offloading the rest of the decision-making work …
estimating an approximate dynamics model, offloading the rest of the decision-making work …
Open x-embodiment: Robotic learning datasets and rt-x models
Large, high-capacity models trained on diverse datasets have shown remarkable successes
on efficiently tackling downstream applications. In domains from NLP to Computer Vision …
on efficiently tackling downstream applications. In domains from NLP to Computer Vision …
Learning mesh-based simulation with graph networks
Mesh-based simulations are central to modeling complex physical systems in many
disciplines across science and engineering. Mesh representations support powerful …
disciplines across science and engineering. Mesh representations support powerful …
Contrastive multi-view representation learning on graphs
K Hassani, AH Khasahmadi - International conference on …, 2020 - proceedings.mlr.press
We introduce a self-supervised approach for learning node and graph level representations
by contrasting structural views of graphs. We show that unlike visual representation learning …
by contrasting structural views of graphs. We show that unlike visual representation learning …
Learning to simulate complex physics with graph networks
A Sanchez-Gonzalez, J Godwin… - International …, 2020 - proceedings.mlr.press
Here we present a machine learning framework and model implementation that can learn to
simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and …
simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and …
Benchmarking graph neural networks
In the last few years, graph neural networks (GNNs) have become the standard toolkit for
analyzing and learning from data on graphs. This emerging field has witnessed an extensive …
analyzing and learning from data on graphs. This emerging field has witnessed an extensive …
Discovering symbolic models from deep learning with inductive biases
M Cranmer, A Sanchez Gonzalez… - Advances in neural …, 2020 - proceedings.neurips.cc
We develop a general approach to distill symbolic representations of a learned deep model
by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The …
by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The …