A review of machine learning in building load prediction

L Zhang, J Wen, Y Li, J Chen, Y Ye, Y Fu, W Livingood - Applied Energy, 2021 - Elsevier
The surge of machine learning and increasing data accessibility in buildings provide great
opportunities for applying machine learning to building energy system modeling and …

A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization

R Ahmed, V Sreeram, Y Mishra, MD Arif - Renewable and Sustainable …, 2020 - Elsevier
Integration of photovoltaics into power grids is difficult as solar energy is highly dependent
on climate and geography; often fluctuating erratically. This causes penetrations and voltage …

Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads

Z Zhang, WC Hong - Knowledge-Based Systems, 2021 - Elsevier
Accurate electric load forecasting is critical in guaranteeing the efficiency of the load
dispatch and supply by a power system, which prevents the wasting of electricity and …

Load forecasting models in smart grid using smart meter information: a review

F Dewangan, AY Abdelaziz, M Biswal - Energies, 2023 - mdpi.com
The smart grid concept is introduced to accelerate the operational efficiency and enhance
the reliability and sustainability of power supply by operating in self-control mode to find and …

Solar photovoltaic power forecasting: A review

KJ Iheanetu - Sustainability, 2022 - mdpi.com
The recent global warming effect has brought into focus different solutions for combating
climate change. The generation of climate-friendly renewable energy alternatives has been …

Forecasting of photovoltaic power generation and model optimization: A review

UK Das, KS Tey, M Seyedmahmoudian… - … and Sustainable Energy …, 2018 - Elsevier
To mitigate the impact of climate change and global warming, the use of renewable energies
is increasing day by day significantly. A considerable amount of electricity is generated from …

Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid

G Hafeez, KS Alimgeer, I Khan - Applied Energy, 2020 - Elsevier
Accurate electric load forecasting is important due to its application in the decision making
and operation of the power grid. However, the electric load profile is a complex signal due to …

A review on time series forecasting techniques for building energy consumption

C Deb, F Zhang, J Yang, SE Lee, KW Shah - Renewable and Sustainable …, 2017 - Elsevier
Energy consumption forecasting for buildings has immense value in energy efficiency and
sustainability research. Accurate energy forecasting models have numerous implications in …

Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges

P Lu, L Ye, Y Zhao, B Dai, M Pei, Y Tang - Applied Energy, 2021 - Elsevier
The integration of large-scale wind power introduces issues in modern power systems
operations due to its strong randomness and volatility. These issues can be resolved via …

Vector field-based support vector regression for building energy consumption prediction

H Zhong, J Wang, H Jia, Y Mu, S Lv - Applied Energy, 2019 - Elsevier
Building energy consumption prediction plays an irreplaceable role in energy planning,
management, and conservation. Data-driven approaches, such as artificial neural networks …