A social path to human-like artificial intelligence

EA Duéñez-Guzmán, S Sadedin, JX Wang… - Nature Machine …, 2023 - nature.com
Traditionally, cognitive and computer scientists have viewed intelligence solipsistically, as a
property of unitary agents devoid of social context. Given the success of contemporary …

[HTML][HTML] Generating meaning: active inference and the scope and limits of passive AI

G Pezzulo, T Parr, P Cisek, A Clark, K Friston - Trends in Cognitive …, 2024 - cell.com
Prominent accounts of sentient behavior depict brains as generative models of organismic
interaction with the world, evincing intriguing similarities with current advances in generative …

A generalist agent

S Reed, K Zolna, E Parisotto, SG Colmenarejo… - arXiv preprint arXiv …, 2022 - arxiv.org
Inspired by progress in large-scale language modeling, we apply a similar approach
towards building a single generalist agent beyond the realm of text outputs. The agent …

Gpt-neox-20b: An open-source autoregressive language model

S Black, S Biderman, E Hallahan, Q Anthony… - arXiv preprint arXiv …, 2022 - arxiv.org
We introduce GPT-NeoX-20B, a 20 billion parameter autoregressive language model
trained on the Pile, whose weights will be made freely and openly available to the public …

Is conditional generative modeling all you need for decision-making?

A Ajay, Y Du, A Gupta, J Tenenbaum… - arXiv preprint arXiv …, 2022 - arxiv.org
Recent improvements in conditional generative modeling have made it possible to generate
high-quality images from language descriptions alone. We investigate whether these …

Multi-game decision transformers

KH Lee, O Nachum, MS Yang, L Lee… - Advances in …, 2022 - proceedings.neurips.cc
A longstanding goal of the field of AI is a method for learning a highly capable, generalist
agent from diverse experience. In the subfields of vision and language, this was largely …

Motionlm: Multi-agent motion forecasting as language modeling

A Seff, B Cera, D Chen, M Ng, A Zhou… - Proceedings of the …, 2023 - openaccess.thecvf.com
Reliable forecasting of the future behavior of road agents is a critical component to safe
planning in autonomous vehicles. Here, we represent continuous trajectories as sequences …

Causal machine learning: A survey and open problems

J Kaddour, A Lynch, Q Liu, MJ Kusner… - arXiv preprint arXiv …, 2022 - arxiv.org
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods
that formalize the data-generation process as a structural causal model (SCM). This …

Language modeling is compression

G Delétang, A Ruoss, PA Duquenne, E Catt… - arXiv preprint arXiv …, 2023 - arxiv.org
It has long been established that predictive models can be transformed into lossless
compressors and vice versa. Incidentally, in recent years, the machine learning community …

Embers of autoregression: Understanding large language models through the problem they are trained to solve

RT McCoy, S Yao, D Friedman, M Hardy… - arXiv preprint arXiv …, 2023 - arxiv.org
The widespread adoption of large language models (LLMs) makes it important to recognize
their strengths and limitations. We argue that in order to develop a holistic understanding of …