[HTML][HTML] Solid-state lithium batteries: Safety and prospects

Y Guo, S Wu, YB He, F Kang, L Chen, H Li, QH Yang - EScience, 2022 - Elsevier
Solid-state lithium batteries are flourishing due to their excellent potential energy density.
Substantial efforts have been made to improve their electrochemical performance by …

Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal–sulfur and selenium batteries

H Hao, T Hutter, BL Boyce, J Watt, P Liu… - Chemical …, 2022 - ACS Publications
Alkali metal batteries based on lithium, sodium, and potassium anodes and sulfur-based
cathodes are regarded as key for next-generation energy storage due to their high …

A LaCl3-based lithium superionic conductor compatible with lithium metal

YC Yin, JT Yang, JD Luo, GX Lu, Z Huang, JP Wang… - Nature, 2023 - nature.com
Inorganic superionic conductors possess high ionic conductivity and excellent thermal
stability but their poor interfacial compatibility with lithium metal electrodes precludes …

Extreme lithium-metal cycling enabled by a mixed ion-and electron-conducting garnet three-dimensional architecture

GV Alexander, C Shi, J O'Neill, ED Wachsman - Nature Materials, 2023 - nature.com
The development of solid-state Li-metal batteries has been limited by the Li-metal plating
and stripping rates and the tendency for dendrite shorts to form at commercially relevant …

Interfacial issues and modification of solid electrolyte interphase for Li metal anode in liquid and solid electrolytes

OB Chae, BL Lucht - Advanced Energy Materials, 2023 - Wiley Online Library
The high energy density required for the next generation of lithium batteries will likely be
enabled by a shift toward lithium metal anode from the conventional intercalation‐based …

Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers

V Raj, V Venturi, VR Kankanallu, B Kuiri… - Nature Materials, 2022 - nature.com
Solid-state Li-ion batteries with lithium anodes offer higher energy densities and are safer
than conventional liquid electrolyte-based Li-ion batteries. However, the growth of lithium …

Critical current density in solid‐state lithium metal batteries: mechanism, influences, and strategies

Y Lu, CZ Zhao, H Yuan, XB Cheng… - Advanced Functional …, 2021 - Wiley Online Library
Solid‐state lithium (Li) metal batteries (SSLMBs) have become a research hotspot in the
energy storage field due to the much‐enhanced safety and high energy density. However …

Metal-air batteries: progress and perspective

Y Chen, J Xu, P He, Y Qiao, S Guo, H Yang, H Zhou - Science Bulletin, 2022 - Elsevier
The metal-air batteries with the largest theoretical energy densities have been paid much
more attention. However, metal-air batteries including Li-air/O 2, Li-CO 2, Na-air/O 2, and Zn …

Solid‐state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces

KJ Kim, M Balaish, M Wadaguchi… - Advanced Energy …, 2021 - Wiley Online Library
The introduction of new, safe, and reliable solid‐electrolyte chemistries and technologies
can potentially overcome the challenges facing their liquid counterparts while widening the …

Physicochemical concepts of the lithium metal anode in solid-state batteries

T Krauskopf, FH Richter, WG Zeier, J Janek - Chemical reviews, 2020 - ACS Publications
Developing reversible lithium metal anodes with high rate capability is one of the central
aims of current battery research. Lithium metal anodes are not only required for the …