[图书][B] Algebraic groups and their birational invariants
VE Voskresenskii, VE VoskresenskiuI, B Kunyavski - 2011 - books.google.com
Since the late 1960s, methods of birational geometry have been used successfully in the
theory of linear algebraic groups, especially in arithmetic problems. This book--which can be …
theory of linear algebraic groups, especially in arithmetic problems. This book--which can be …
Manin's conjecture for toric varieties
VV Batyrev, Y Tschinkel - arXiv preprint alg-geom/9510014, 1995 - arxiv.org
arXiv:alg-geom/9510014v1 26 Oct 1995 Page 1 arXiv:alg-geom/9510014v1 26 Oct 1995
Manin’s conjecture for toric varieties Victor V. Batyrev∗ Universität-GHS-Essen, Fachbereich …
Manin’s conjecture for toric varieties Victor V. Batyrev∗ Universität-GHS-Essen, Fachbereich …
[PDF][PDF] Géométrie d'Arakelov des variétés toriques et fibrés en droites intégrables
V Maillot - 2000 - numdam.org
Notre but, dans ce mémoire, est double. Nous étendons tout d'abord la théorie de
l'intersection arithmétique de Gillet-Soulé afin qu'elle englobe les fibres en droites …
l'intersection arithmétique de Gillet-Soulé afin qu'elle englobe les fibres en droites …
Tamagawa numbers of polarized algebraic varieties
VV Batyrev, Y Tschinkel - arXiv preprint alg-geom/9712002, 1997 - arxiv.org
Let ${\cal L}=(L,\|\cdot\| _v) $ be an ample metrized invertible sheaf on a smooth quasi-
projective algebraic variety $ V $ defined over a number field. Denote by $ N (V,{\cal L}, B) …
projective algebraic variety $ V $ defined over a number field. Denote by $ N (V,{\cal L}, B) …
Weighted projective embeddings, stability of orbifolds, and constant scarla curvature kär metrics
J Ross, R Thomas - Journal of Differential Geometry, 2011 - projecteuclid.org
We embed polarised orbifolds with cyclic stabiliser groups into weighted projective space
via a weighted form of Kodaira embedding. Dividing by the (non-reductive) automorphisms …
via a weighted form of Kodaira embedding. Dividing by the (non-reductive) automorphisms …
Rational points on some Fano cubic bundles
VV Batyrev, Y Tschinkel - arXiv preprint alg-geom/9602013, 1996 - arxiv.org
We consider some families of smooth Fano hypersurfaces $ X_ {n+ 2} $ in ${\bf P}^{n+
2}\times {\bf P}^ 3$ given by a homogeneous polynomial of bidegree $(1, 3) $. For these …
2}\times {\bf P}^ 3$ given by a homogeneous polynomial of bidegree $(1, 3) $. For these …
Counting lattice points
A Gorodnik, A Nevo - Journal für die reine und angewandte …, 2012 - degruyter.com
For a locally compact second countable group G and a lattice subgroup Γ, we give an
explicit quantitative solution of the lattice point counting problem in general domains in G …
explicit quantitative solution of the lattice point counting problem in general domains in G …
Points de hauteur bornée, topologie adélique et mesures de Tamagawa
E Peyre - Journal de théorie des nombres de Bordeaux, 2003 - numdam.org
Si V est une variété algébrique projective sur un corps de nombres dont les points rationnels
sont denses pour la topologie de Zariski, il est naturel de munir V d'une hauteur et d'étudier …
sont denses pour la topologie de Zariski, il est naturel de munir V d'une hauteur et d'étudier …
Igusa integrals and volume asymptotics in analytic and adelic geometry
A Chambert-Loir, Y Tschinkel - Confluentes Mathematici, 2010 - numdam.org
We establish asymptotic formulas for volumes of height balls in analytic varieties over local
fields and in adelic points of algebraic varieties over number fields, relating the Mellin …
fields and in adelic points of algebraic varieties over number fields, relating the Mellin …
Height zeta functions of toric varieties
VV Batyrev, Y Tschinkel - arXiv preprint alg-geom/9606003, 1996 - arxiv.org
We investigate analytic properties of height zeta functions of toric varieties. Using the height
zeta functions, we prove an asymptotic formula for the number of rational points of bounded …
zeta functions, we prove an asymptotic formula for the number of rational points of bounded …