Deep learning in histopathology: the path to the clinic

J Van der Laak, G Litjens, F Ciompi - Nature medicine, 2021 - nature.com
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …

Multi-modal 3d object detection in autonomous driving: A survey and taxonomy

L Wang, X Zhang, Z Song, J Bi, G Zhang… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Autonomous vehicles require constant environmental perception to obtain the distribution of
obstacles to achieve safe driving. Specifically, 3D object detection is a vital functional …

Segment anything model for medical images?

Y Huang, X Yang, L Liu, H Zhou, A Chang, X Zhou… - Medical Image …, 2024 - Elsevier
Abstract The Segment Anything Model (SAM) is the first foundation model for general image
segmentation. It has achieved impressive results on various natural image segmentation …

Transformer-based unsupervised contrastive learning for histopathological image classification

X Wang, S Yang, J Zhang, M Wang, J Zhang… - Medical image …, 2022 - Elsevier
A large-scale and well-annotated dataset is a key factor for the success of deep learning in
medical image analysis. However, assembling such large annotations is very challenging …

Deep neural network models for computational histopathology: A survey

CL Srinidhi, O Ciga, AL Martel - Medical image analysis, 2021 - Elsevier
Histopathological images contain rich phenotypic information that can be used to monitor
underlying mechanisms contributing to disease progression and patient survival outcomes …

[HTML][HTML] The impact of pre-and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

M Salvi, UR Acharya, F Molinari… - Computers in Biology and …, 2021 - Elsevier
Recently, deep learning frameworks have rapidly become the main methodology for
analyzing medical images. Due to their powerful learning ability and advantages in dealing …

Lizard: A large-scale dataset for colonic nuclear instance segmentation and classification

S Graham, M Jahanifar, A Azam… - Proceedings of the …, 2021 - openaccess.thecvf.com
The development of deep segmentation models for computational pathology (CPath) can
help foster the investigation of interpretable morphological biomarkers. Yet, there is a major …

A comprehensive review of deep learning in colon cancer

I Pacal, D Karaboga, A Basturk, B Akay… - Computers in Biology …, 2020 - Elsevier
Deep learning has emerged as a leading machine learning tool in object detection and has
attracted attention with its achievements in progressing medical image analysis …

Pseudo-label guided contrastive learning for semi-supervised medical image segmentation

H Basak, Z Yin - Proceedings of the IEEE/CVF conference …, 2023 - openaccess.thecvf.com
Although recent works in semi-supervised learning (SemiSL) have accomplished significant
success in natural image segmentation, the task of learning discriminative representations …

Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology

JM Dolezal, A Srisuwananukorn, D Karpeyev… - Nature …, 2022 - nature.com
A model's ability to express its own predictive uncertainty is an essential attribute for
maintaining clinical user confidence as computational biomarkers are deployed into real …