Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

Machine learning for alloys

GLW Hart, T Mueller, C Toher, S Curtarolo - Nature Reviews Materials, 2021 - nature.com
Alloy modelling has a history of machine-learning-like approaches, preceding the tide of
data-science-inspired work. The dawn of computational databases has made the integration …

Emerging materials intelligence ecosystems propelled by machine learning

R Batra, L Song, R Ramprasad - Nature Reviews Materials, 2021 - nature.com
The age of cognitive computing and artificial intelligence (AI) is just dawning. Inspired by its
successes and promises, several AI ecosystems are blossoming, many of them within the …

Data-driven materials research enabled by natural language processing and information extraction

EA Olivetti, JM Cole, E Kim, O Kononova… - Applied Physics …, 2020 - pubs.aip.org
Given the emergence of data science and machine learning throughout all aspects of
society, but particularly in the scientific domain, there is increased importance placed on …

Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering

DM Dimiduk, EA Holm, SR Niezgoda - Integrating Materials and …, 2018 - Springer
The fields of machining learning and artificial intelligence are rapidly expanding, impacting
nearly every technological aspect of society. Many thousands of published manuscripts …

Recent advances and applications of machine learning in experimental solid mechanics: A review

H Jin, E Zhang, HD Espinosa - Applied …, 2023 - asmedigitalcollection.asme.org
For many decades, experimental solid mechanics has played a crucial role in characterizing
and understanding the mechanical properties of natural and novel artificial materials …

Artificial-intelligence-led revolution of construction materials: From molecules to Industry 4.0

XQ Wang, P Chen, CL Chow, D Lau - Matter, 2023 - cell.com
Industry 4.0 promotes the transformation of manufacturing industry to intelligence, which
demands advances in materials, devices, and systems of the construction industry …

Discovery of high-entropy ceramics via machine learning

K Kaufmann, D Maryanovsky, WM Mellor… - Npj Computational …, 2020 - nature.com
Although high-entropy materials are attracting considerable interest due to a combination of
useful properties and promising applications, predicting their formation remains a hindrance …

Deep learning-based detection of aluminum casting defects and their types

IE Parlak, E Emel - Engineering Applications of Artificial Intelligence, 2023 - Elsevier
Due to its unique properties, high-pressure aluminum die-casting parts are used quite often,
especially in the automotive industry. However, die-casting is a process which requires non …

Overview: Computer vision and machine learning for microstructural characterization and analysis

EA Holm, R Cohn, N Gao, AR Kitahara… - … Materials Transactions A, 2020 - Springer
Microstructural characterization and analysis is the foundation of microstructural science,
connecting materials structure to composition, process history, and properties …