From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
A review on language models as knowledge bases
Recently, there has been a surge of interest in the NLP community on the use of pretrained
Language Models (LMs) as Knowledge Bases (KBs). Researchers have shown that LMs …
Language Models (LMs) as Knowledge Bases (KBs). Researchers have shown that LMs …
A survey of large language models
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …
Scaling instruction-finetuned language models
Finetuning language models on a collection of datasets phrased as instructions has been
shown to improve model performance and generalization to unseen tasks. In this paper we …
shown to improve model performance and generalization to unseen tasks. In this paper we …
Measuring and improving consistency in pretrained language models
Consistency of a model—that is, the invariance of its behavior under meaning-preserving
alternations in its input—is a highly desirable property in natural language processing. In …
alternations in its input—is a highly desirable property in natural language processing. In …
Personality traits in large language models
The advent of large language models (LLMs) has revolutionized natural language
processing, enabling the generation of coherent and contextually relevant text. As LLMs …
processing, enabling the generation of coherent and contextually relevant text. As LLMs …
Toward transparent ai: A survey on interpreting the inner structures of deep neural networks
The last decade of machine learning has seen drastic increases in scale and capabilities.
Deep neural networks (DNNs) are increasingly being deployed in the real world. However …
Deep neural networks (DNNs) are increasingly being deployed in the real world. However …
Explainable deep learning: A field guide for the uninitiated
Deep neural networks (DNNs) are an indispensable machine learning tool despite the
difficulty of diagnosing what aspects of a model's input drive its decisions. In countless real …
difficulty of diagnosing what aspects of a model's input drive its decisions. In countless real …
Ai psychometrics: Assessing the psychological profiles of large language models through psychometric inventories
We illustrate how standard psychometric inventories originally designed for assessing
noncognitive human traits can be repurposed as diagnostic tools to evaluate analogous …
noncognitive human traits can be repurposed as diagnostic tools to evaluate analogous …
A review on explainability in multimodal deep neural nets
Artificial Intelligence techniques powered by deep neural nets have achieved much success
in several application domains, most significantly and notably in the Computer Vision …
in several application domains, most significantly and notably in the Computer Vision …