Diffusion models in medical imaging: A comprehensive survey
Denoising diffusion models, a class of generative models, have garnered immense interest
lately in various deep-learning problems. A diffusion probabilistic model defines a forward …
lately in various deep-learning problems. A diffusion probabilistic model defines a forward …
Generative adversarial networks in time series: A systematic literature review
Generative adversarial network (GAN) studies have grown exponentially in the past few
years. Their impact has been seen mainly in the computer vision field with realistic image …
years. Their impact has been seen mainly in the computer vision field with realistic image …
Infogcn: Representation learning for human skeleton-based action recognition
Human skeleton-based action recognition offers a valuable means to understand the
intricacies of human behavior because it can handle the complex relationships between …
intricacies of human behavior because it can handle the complex relationships between …
One-step diffusion with distribution matching distillation
Diffusion models generate high-quality images but require dozens of forward passes. We
introduce Distribution Matching Distillation (DMD) a procedure to transform a diffusion model …
introduce Distribution Matching Distillation (DMD) a procedure to transform a diffusion model …
GAN review: Models and medical image fusion applications
T Zhou, Q Li, H Lu, Q Cheng, X Zhang - Information Fusion, 2023 - Elsevier
Abstract Generative Adversarial Network (GAN) is a research hotspot in deep generative
models, which has been widely used in the field of medical image fusion. This paper …
models, which has been widely used in the field of medical image fusion. This paper …
Dataset condensation with distribution matching
Computational cost of training state-of-the-art deep models in many learning problems is
rapidly increasing due to more sophisticated models and larger datasets. A recent promising …
rapidly increasing due to more sophisticated models and larger datasets. A recent promising …
A review on generative adversarial networks: Algorithms, theory, and applications
Generative adversarial networks (GANs) have recently become a hot research topic;
however, they have been studied since 2014, and a large number of algorithms have been …
however, they have been studied since 2014, and a large number of algorithms have been …
Improved distribution matching for dataset condensation
Dataset Condensation aims to condense a large dataset into a smaller one while
maintaining its ability to train a well-performing model, thus reducing the storage cost and …
maintaining its ability to train a well-performing model, thus reducing the storage cost and …
Diffusion models for medical image analysis: A comprehensive survey
Denoising diffusion models, a class of generative models, have garnered immense interest
lately in various deep-learning problems. A diffusion probabilistic model defines a forward …
lately in various deep-learning problems. A diffusion probabilistic model defines a forward …
A review of generalized zero-shot learning methods
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples
under the condition that some output classes are unknown during supervised learning. To …
under the condition that some output classes are unknown during supervised learning. To …