Computer modeling of the heart for ECG interpretation—a review

O Dössel, G Luongo, C Nagel, A Loewe - Hearts, 2021 - mdpi.com
Computer modeling of the electrophysiology of the heart has undergone significant
progress. A healthy heart can be modeled starting from the ion channels via the spread of a …

[HTML][HTML] Performance assessment of electrode configurations for the estimation of omnipolar electrograms from high density arrays

F Castells, S Ruipérez-Campillo, I Segarra… - Computers in biology …, 2023 - Elsevier
Objective: The aim of this study is to propose a method to reduce the sensitivity of the
estimated omnipolar electrogram (oEGM) with respect to the angle of the propagation …

Clustering and machine learning framework for medical time series classification

S Ruipérez-Campillo, M Reiss, E Ramírez… - Biocybernetics and …, 2024 - Elsevier
Background and motivation: The application of artificial intelligence in medical research,
particularly unsupervised learning techniques, has shown promising potential. Medical time …

[HTML][HTML] New ECG biomarkers and sex-stratified models for the detection of Arrhythmogenic Cardiomyopathy with left ventricular involvement

S Jiménez-Serrano, J Sanz-Sánchez… - … Signal Processing and …, 2025 - Elsevier
Arrhythmogenic Cardiomyopathy (ACM) is a rare cardiac genetic disease that can lead to
severe cardiac structural and electrical abnormalities. Diagnosing ACM includes several …

[HTML][HTML] Novel synchronization method for vectorcardiogram reconstruction from ECG printouts: A comprehensive validation approach

E Ramírez, S Ruipérez-Campillo, F Castells… - … Signal Processing and …, 2024 - Elsevier
Abstract Background and Objectives: The extensive collection of electrocardiogram (ECG)
recordings stored in paper format has provided opportunities for numerous digitization …

Novel Method for Orientation-Independent Analysis in Equi-Spaced Multi-Electrode Arrays

I Segarra, S Ruipércz-Campillo… - 2022 Computing in …, 2022 - ieeexplore.ieee.org
The diagnosis and treatment of cardiac arrhythmias relies on catheter recordings, that may
be inefficient because of the continued use of the bipolar processing and analysis …

Classification of Atrial Tachycardia Types Using Dimensional Transforms of ECG Signals and Machine Learning

S Ruipérez-Campillo, J Millet… - 2022 Computing in …, 2022 - ieeexplore.ieee.org
Accurate non-invasive diagnoses in the context of cardiac diseases are problems that
hitherto remain unresolved. We propose an unsupervised classification of atrial flutter (AFL) …

[PDF][PDF] Metodología Robusta Basada en los Fundamentos del Machine Learning Para la Clasificación de Señales Biomédicas. Aplicación a 3 Desafíos de la …

SR Campillo, FSR Castells, JM Roig - researchgate.net
Metodología Robusta Basada en los Fundamentos del Machine Learning Para la Clasificación
de Señales Biomédicas. Aplicación Page 1 Metodología Robusta Basada en los Fundamentos …

[PDF][PDF] Estudio Comparativo con Señales Epicárdicas de las Limitaciones del Omnipolo con Multielectrodos de Alta Densidad

MC Aguirre, SR Campillo, I Segarra, A Guill, A Tormos… - researchgate.net
Con la aparición de nuevos catéteres multielectrodos se han ampliado las opciones de
exploración en un estudio electrofisiológico. En particular el HD Grid de Abbot, con una …

[PDF][PDF] Cuantificación de la Heterogeneidad del Sustrato Electrofisiológico Cardiaco en Registros Obtenidos mediante Multielectrodos de Alta Densidad

L Pancorbo, S Ruipérez-Campillo, A Guill, A Tormos… - researchgate.net
En este estudio se propone una métrica para medir la heterogeneidad del sustrato cardiaco
a partir de mapas vectoriales derivados de electrogramas omnipolares. Dicho parámetro …