Physics-informed neural networks (PINNs) for fluid mechanics: A review

S Cai, Z Mao, Z Wang, M Yin, GE Karniadakis - Acta Mechanica Sinica, 2021 - Springer
Despite the significant progress over the last 50 years in simulating flow problems using
numerical discretization of the Navier–Stokes equations (NSE), we still cannot incorporate …

Deep learning methods for flood mapping: a review of existing applications and future research directions

R Bentivoglio, E Isufi, SN Jonkman… - Hydrology and Earth …, 2022 - hess.copernicus.org
Deep Learning techniques have been increasingly used in flood management to overcome
the limitations of accurate, yet slow, numerical models, and to improve the results of …

Self-adaptive loss balanced physics-informed neural networks

Z Xiang, W Peng, X Liu, W Yao - Neurocomputing, 2022 - Elsevier
Physics-informed neural networks (PINNs) have received significant attention as a
representative deep learning-based technique for solving partial differential equations …

PhyCRNet: Physics-informed convolutional-recurrent network for solving spatiotemporal PDEs

P Ren, C Rao, Y Liu, JX Wang, H Sun - Computer Methods in Applied …, 2022 - Elsevier
Partial differential equations (PDEs) play a fundamental role in modeling and simulating
problems across a wide range of disciplines. Recent advances in deep learning have shown …

Physics-informed multi-LSTM networks for metamodeling of nonlinear structures

R Zhang, Y Liu, H Sun - Computer Methods in Applied Mechanics and …, 2020 - Elsevier
This paper introduces an innovative physics-informed deep learning framework for
metamodeling of nonlinear structural systems with scarce data. The basic concept is to …

Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling

R Zhang, Y Liu, H Sun - Engineering Structures, 2020 - Elsevier
Accurate prediction of building's response subjected to earthquakes makes possible to
evaluate building performance. To this end, we leverage the recent advances in deep …

Physics guided neural network for machining tool wear prediction

J Wang, Y Li, R Zhao, RX Gao - Journal of Manufacturing Systems, 2020 - Elsevier
Tool wear prediction is of significance to improve the safety and reliability of machining tools,
given their widespread applications in nearly every branch of manufacturing. Mathematical …

Scientific multi-agent reinforcement learning for wall-models of turbulent flows

HJ Bae, P Koumoutsakos - Nature Communications, 2022 - nature.com
The predictive capabilities of turbulent flow simulations, critical for aerodynamic design and
weather prediction, hinge on the choice of turbulence models. The abundance of data from …

Hybrid physics-based and data-driven models for smart manufacturing: Modelling, simulation, and explainability

J Wang, Y Li, RX Gao, F Zhang - Journal of Manufacturing Systems, 2022 - Elsevier
To overcome the limitations associated with purely physics-based and data-driven modeling
methods, hybrid, physics-based data-driven models have been developed, with improved …

[HTML][HTML] Grid-point and time-step requirements for direct numerical simulation and large-eddy simulation

XIA Yang, KP Griffin - Physics of Fluids, 2021 - pubs.aip.org
We revisit the grid-point requirement estimates in Choi and Moin [“Grid-point requirements
for large eddy simulation: Chapman's estimates revisited,” Phys. Fluids 24, 011702 (2012)] …