Multi-agent reinforcement learning: A selective overview of theories and algorithms

K Zhang, Z Yang, T Başar - Handbook of reinforcement learning and …, 2021 - Springer
Recent years have witnessed significant advances in reinforcement learning (RL), which
has registered tremendous success in solving various sequential decision-making problems …

An overview of multi-agent reinforcement learning from game theoretical perspective

Y Yang, J Wang - arXiv preprint arXiv:2011.00583, 2020 - arxiv.org
Following the remarkable success of the AlphaGO series, 2019 was a booming year that
witnessed significant advances in multi-agent reinforcement learning (MARL) techniques …

Multi-agent deep reinforcement learning: a survey

S Gronauer, K Diepold - Artificial Intelligence Review, 2022 - Springer
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …

Metadrive: Composing diverse driving scenarios for generalizable reinforcement learning

Q Li, Z Peng, L Feng, Q Zhang, Z Xue… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Driving safely requires multiple capabilities from human and intelligent agents, such as the
generalizability to unseen environments, the safety awareness of the surrounding traffic, and …

Qtran: Learning to factorize with transformation for cooperative multi-agent reinforcement learning

K Son, D Kim, WJ Kang… - … on machine learning, 2019 - proceedings.mlr.press
We explore value-based solutions for multi-agent reinforcement learning (MARL) tasks in
the centralized training with decentralized execution (CTDE) regime popularized recently …

Smacv2: An improved benchmark for cooperative multi-agent reinforcement learning

B Ellis, J Cook, S Moalla… - Advances in …, 2024 - proceedings.neurips.cc
The availability of challenging benchmarks has played a key role in the recent progress of
machine learning. In cooperative multi-agent reinforcement learning, the StarCraft Multi …

The starcraft multi-agent challenge

M Samvelyan, T Rashid, CS De Witt… - arXiv preprint arXiv …, 2019 - arxiv.org
In the last few years, deep multi-agent reinforcement learning (RL) has become a highly
active area of research. A particularly challenging class of problems in this area is partially …

Deep reinforcement learning for Internet of Things: A comprehensive survey

W Chen, X Qiu, T Cai, HN Dai… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The incumbent Internet of Things suffers from poor scalability and elasticity exhibiting in
communication, computing, caching and control (4Cs) problems. The recent advances in …

Monotonic value function factorisation for deep multi-agent reinforcement learning

T Rashid, M Samvelyan, CS De Witt, G Farquhar… - Journal of Machine …, 2020 - jmlr.org
In many real-world settings, a team of agents must coordinate its behaviour while acting in a
decentralised fashion. At the same time, it is often possible to train the agents in a …

Graph neural network and reinforcement learning for multi‐agent cooperative control of connected autonomous vehicles

S Chen, J Dong, P Ha, Y Li… - Computer‐Aided Civil and …, 2021 - Wiley Online Library
A connected autonomous vehicle (CAV) network can be defined as a set of connected
vehicles including CAVs that operate on a specific spatial scope that may be a road network …