MLOS in Action: Bridging the Gap Between Experimentation and Auto-Tuning in the Cloud

B Kroth, S Matusevych, R Alotaibi, Y Zhu… - Proceedings of the …, 2024 - dl.acm.org
This paper presents MLOS (ML Optimized Systems), a flexible framework that bridges the
gap between benchmarking, experimentation, and optimization of software systems. It …

TRAP: Tailored Robustness Assessment for Index Advisors via Adversarial Perturbation

W Zhou, C Lin, X Zhou, G Li… - 2024 IEEE 40th …, 2024 - ieeexplore.ieee.org
Many index advisors have recently been proposed to build indexes automatically to improve
query performance. However, they mainly consider performance improvement in static …

Optimizing the cloud? Don't train models. Build oracles!

T Bang, C Power, S Ameli, N Crooks… - arXiv preprint arXiv …, 2023 - arxiv.org
We propose cloud oracles, an alternative to machine learning for online optimization of
cloud configurations. Our cloud oracle approach guarantees complete accuracy and …

Sparkle: Deep Learning driven autotuning for taming high-dimensionality of Spark deployments

D Masouros, G Retsinas, S Xydis… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
The exponential growth of data in the Cloud has highlighted the need for more efficient data
processing. In-Memory Computing frameworks (eg, Spark) offer improved efficiency for large …

Stochastic Scheduling Informed by Probabilistic Forecasts of Computing Resource Requirements

SC Small - 2023 - search.proquest.com
Cloud computing has emerged as a dominant paradigm, where a colossal scale serves as
the claim to fame. Scheduling exists as a key component of cloud computing, and small …

[PDF][PDF] Query Optimization mit Reinforcement Learning

G Spankus - ub-deposit.fernuni-hagen.de
Query Optimizer sind ein wichtiger Teil eines DBMS. Die Aufgabe, aus einer Anfrage einen
Ausführungsplan zu erstellen, ist sehr komplex. Reinforcement Learning (RL) zeigt gute …