[HTML][HTML] Model aggregation techniques in federated learning: A comprehensive survey

P Qi, D Chiaro, A Guzzo, M Ianni, G Fortino… - Future Generation …, 2024 - Elsevier
Federated learning (FL) is a distributed machine learning (ML) approach that enables
models to be trained on client devices while ensuring the privacy of user data. Model …

A survey on federated unlearning: Challenges, methods, and future directions

Z Liu, Y Jiang, J Shen, M Peng, KY Lam… - ACM Computing …, 2024 - dl.acm.org
In recent years, the notion of “the right to be forgotten”(RTBF) has become a crucial aspect of
data privacy for digital trust and AI safety, requiring the provision of mechanisms that support …

On the ICN-IoT with federated learning integration of communication: Concepts, security-privacy issues, applications, and future perspectives

A Rahman, K Hasan, D Kundu, MJ Islam… - Future Generation …, 2023 - Elsevier
The individual and integration use of the Internet of Things (IoT), Information-Centric
Networking (ICN), and Federated Learning (FL) have recently been used in several network …

Efficiency optimization techniques in privacy-preserving federated learning with homomorphic encryption: A brief survey

Q Xie, S Jiang, L Jiang, Y Huang, Z Zhao… - IEEE Internet of …, 2024 - ieeexplore.ieee.org
Federated learning (FL) offers distributed machine learning on edge devices. However, the
FL model raises privacy concerns. Various techniques, such as homomorphic encryption …

Reviewing federated learning aggregation algorithms; strategies, contributions, limitations and future perspectives

M Moshawrab, M Adda, A Bouzouane, H Ibrahim… - Electronics, 2023 - mdpi.com
The success of machine learning (ML) techniques in the formerly difficult areas of data
analysis and pattern extraction has led to their widespread incorporation into various …

Edge learning for 6G-enabled Internet of Things: A comprehensive survey of vulnerabilities, datasets, and defenses

MA Ferrag, O Friha, B Kantarci… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
The deployment of the fifth-generation (5G) wireless networks in Internet of Everything (IoE)
applications and future networks (eg, sixth-generation (6G) networks) has raised a number …

Threats, attacks, and defenses in machine unlearning: A survey

Z Liu, H Ye, C Chen, Y Zheng, KY Lam - arXiv preprint arXiv:2403.13682, 2024 - arxiv.org
Machine Unlearning (MU) has recently gained considerable attention due to its potential to
achieve Safe AI by removing the influence of specific data from trained Machine Learning …

Exploring privacy measurement in federated learning

GK Jagarlamudi, A Yazdinejad, RM Parizi… - The Journal of …, 2024 - Springer
Federated learning (FL) is a collaborative artificial intelligence (AI) approach that enables
distributed training of AI models without data sharing, thereby promoting privacy by design …

Fedvs: Straggler-resilient and privacy-preserving vertical federated learning for split models

S Li, D Yao, J Liu - International Conference on Machine …, 2023 - proceedings.mlr.press
In a vertical federated learning (VFL) system consisting of a central server and many
distributed clients, the training data are vertically partitioned such that different features are …

Efficient verifiable protocol for privacy-preserving aggregation in federated learning

T Eltaras, F Sabry, W Labda, K Alzoubi… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Federated learning has gained extensive interest in recent years owing to its ability to
update model parameters without obtaining raw data from users, which makes it a viable …