Self-supervised learning in remote sensing: A review
Y Wang, CM Albrecht, NAA Braham… - IEEE Geoscience and …, 2022 - ieeexplore.ieee.org
In deep learning research, self-supervised learning (SSL) has received great attention,
triggering interest within both the computer vision and remote sensing communities. While …
triggering interest within both the computer vision and remote sensing communities. While …
Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox
Hyperspectral images (HSIs) provide detailed spectral information through hundreds of
(narrow) spectral channels (also known as dimensionality or bands), which can be used to …
(narrow) spectral channels (also known as dimensionality or bands), which can be used to …
Extended vision transformer (ExViT) for land use and land cover classification: A multimodal deep learning framework
The recent success of attention mechanism-driven deep models, like vision transformer (ViT)
as one of the most representatives, has intrigued a wave of advanced research to explore …
as one of the most representatives, has intrigued a wave of advanced research to explore …
Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction
The prediction of crowd flows is an important urban computing issue whose purpose is to
predict the future number of incoming and outgoing people in regions. Measuring the …
predict the future number of incoming and outgoing people in regions. Measuring the …
Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification
Y Ding, Z Zhang, X Zhao, D Hong, W Cai, C Yu, N Yang… - Neurocomputing, 2022 - Elsevier
Due to its impressive representation power, the graph convolutional network (GCN) has
attracted increasing attention in the hyperspectral image (HSI) classification. However, the …
attracted increasing attention in the hyperspectral image (HSI) classification. However, the …
Convolutional neural networks for multimodal remote sensing data classification
In recent years, enormous research has been made to improve the classification
performance of single-modal remote sensing (RS) data. However, with the ever-growing …
performance of single-modal remote sensing (RS) data. However, with the ever-growing …
More diverse means better: Multimodal deep learning meets remote-sensing imagery classification
Classification and identification of the materials lying over or beneath the earth's surface
have long been a fundamental but challenging research topic in geoscience and remote …
have long been a fundamental but challenging research topic in geoscience and remote …
Graph convolutional networks for hyperspectral image classification
Convolutional neural networks (CNNs) have been attracting increasing attention in
hyperspectral (HS) image classification due to their ability to capture spatial-spectral feature …
hyperspectral (HS) image classification due to their ability to capture spatial-spectral feature …
Deep learning for unmanned aerial vehicle-based object detection and tracking: A survey
Owing to effective and flexible data acquisition, unmanned aerial vehicles (UAVs) have
recently become a hotspot across the fields of computer vision (CV) and remote sensing …
recently become a hotspot across the fields of computer vision (CV) and remote sensing …
Hyperspectral image classification—Traditional to deep models: A survey for future prospects
Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications
because it benefits from the detailed spectral information contained in each pixel. Notably …
because it benefits from the detailed spectral information contained in each pixel. Notably …