Aligning artificial intelligence with climate change mitigation

LH Kaack, PL Donti, E Strubell, G Kamiya… - Nature Climate …, 2022 - nature.com
There is great interest in how the growth of artificial intelligence and machine learning may
affect global GHG emissions. However, such emissions impacts remain uncertain, owing in …

[HTML][HTML] Crop yield prediction using machine learning: A systematic literature review

T Van Klompenburg, A Kassahun, C Catal - Computers and electronics in …, 2020 - Elsevier
Abstract Machine learning is an important decision support tool for crop yield prediction,
including supporting decisions on what crops to grow and what to do during the growing …

Forecasting of crop yield using remote sensing data, agrarian factors and machine learning approaches

JP Bharadiya, NT Tzenios… - Journal of Engineering …, 2023 - classical.goforpromo.com
The art of predicting crop production is done before the crop is harvested. Crop output
forecasts will help people make timely judgments concerning food policy, prices in markets …

Satmae: Pre-training transformers for temporal and multi-spectral satellite imagery

Y Cong, S Khanna, C Meng, P Liu… - Advances in …, 2022 - proceedings.neurips.cc
Unsupervised pre-training methods for large vision models have shown to enhance
performance on downstream supervised tasks. Developing similar techniques for satellite …

A systematic literature review on crop yield prediction with deep learning and remote sensing

P Muruganantham, S Wibowo, S Grandhi, NH Samrat… - Remote Sensing, 2022 - mdpi.com
Deep learning has emerged as a potential tool for crop yield prediction, allowing the model
to automatically extract features and learn from the datasets. Meanwhile, smart farming …

Deep learning in environmental remote sensing: Achievements and challenges

Q Yuan, H Shen, T Li, Z Li, S Li, Y Jiang, H Xu… - Remote sensing of …, 2020 - Elsevier
Various forms of machine learning (ML) methods have historically played a valuable role in
environmental remote sensing research. With an increasing amount of “big data” from earth …

Machine Learning, Deep Learning and Statistical Analysis for forecasting building energy consumption—A systematic review

M Khalil, AS McGough, Z Pourmirza… - … Applications of Artificial …, 2022 - Elsevier
The building sector accounts for 36% of the total global energy usage and 40% of
associated Carbon Dioxide emissions. Therefore, the forecasting of building energy …

Soybean yield prediction from UAV using multimodal data fusion and deep learning

M Maimaitijiang, V Sagan, P Sidike, S Hartling… - Remote sensing of …, 2020 - Elsevier
Preharvest crop yield prediction is critical for grain policy making and food security. Early
estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping …

Wilds: A benchmark of in-the-wild distribution shifts

PW Koh, S Sagawa, H Marklund… - International …, 2021 - proceedings.mlr.press
Distribution shifts—where the training distribution differs from the test distribution—can
substantially degrade the accuracy of machine learning (ML) systems deployed in the wild …

A review of deep learning techniques used in agriculture

I Attri, LK Awasthi, TP Sharma, P Rathee - Ecological Informatics, 2023 - Elsevier
Deep learning (DL) is a robust data-analysis and image-processing technique that has
shown great promise in the agricultural sector. In this study, 129 papers that are based on …