Research progress in architecture and application of RRAM with computing-in-memory

C Wang, G Shi, F Qiao, R Lin, S Wu, Z Hu - Nanoscale Advances, 2023 - pubs.rsc.org
The development of new technologies has led to an explosion of data, while the
computation ability of traditional computers is approaching its upper limit. The dominant …

[PDF][PDF] 基于忆阻器的感存算一体技术综述

张章, 李超, 韩婷婷, 许傲, 程心, 刘钢, 解光军 - 电子与信息学报, 2021 - jeit.ac.cn
忆阻器的低功耗, 高响应, 纳米级, 非易失性等特性, 在实现非冯· 诺依曼计算架构中展现出巨大
潜力. 基于忆阻器的高密度横梁阵列可实现数据存储及并行计算一体的逻辑电路和类脑计算电路 …

A customized convolutional neural network design using improved softmax layer for real-time human emotion recognition

KY Wang, YD Huang, YL Ho… - 2019 IEEE International …, 2019 - ieeexplore.ieee.org
This paper proposes an improved softmax layer algorithm and hardware implementation,
which is applicable to an effective convolutional neural network of EEG-based real-time …

[HTML][HTML] Review of the Fused Technology of Sensing, Storage and Computing Based on Memristor

Z ZHANG, LI Chao, HAN Tingting, XU Ao, X CHENG… - 电子与信息学报, 2021 - jeit.ac.cn
Because of its low power consumption, high response, nanometer level, non-volatility and
other characteristics, the memristor shows great development potential in the realization of …

[引用][C] CANDIDATES'DECLARATION

MI Sukanya, MSU Mashuk - 2022