Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review

EH Houssein, A Hammad, AA Ali - Neural Computing and Applications, 2022 - Springer
Affective computing, a subcategory of artificial intelligence, detects, processes, interprets,
and mimics human emotions. Thanks to the continued advancement of portable non …

EEG based emotion recognition: A tutorial and review

X Li, Y Zhang, P Tiwari, D Song, B Hu, M Yang… - ACM Computing …, 2022 - dl.acm.org
Emotion recognition technology through analyzing the EEG signal is currently an essential
concept in Artificial Intelligence and holds great potential in emotional health care, human …

EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM

Y Yin, X Zheng, B Hu, Y Zhang, X Cui - Applied Soft Computing, 2021 - Elsevier
In recent years, graph convolutional neural networks have become research focus and
inspired new ideas for emotion recognition based on EEG. Deep learning has been widely …

EEG-based emotion recognition via channel-wise attention and self attention

W Tao, C Li, R Song, J Cheng, Y Liu… - IEEE Transactions …, 2020 - ieeexplore.ieee.org
Emotion recognition based on electroencephalography (EEG) is a significant task in the
brain-computer interface field. Recently, many deep learning-based emotion recognition …

EEG-based emotion recognition using regularized graph neural networks

P Zhong, D Wang, C Miao - IEEE Transactions on Affective …, 2020 - ieeexplore.ieee.org
Electroencephalography (EEG) measures the neuronal activities in different brain regions
via electrodes. Many existing studies on EEG-based emotion recognition do not fully exploit …

Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition

W Liu, JL Qiu, WL Zheng, BL Lu - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Multimodal signals are powerful for emotion recognition since they can represent emotions
comprehensively. In this article, we compare the recognition performance and robustness of …

EEG emotion recognition using dynamical graph convolutional neural networks

T Song, W Zheng, P Song, Z Cui - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
In this paper, a multichannel EEG emotion recognition method based on a novel dynamical
graph convolutional neural networks (DGCNN) is proposed. The basic idea of the proposed …

Emotionmeter: A multimodal framework for recognizing human emotions

WL Zheng, W Liu, Y Lu, BL Lu… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
In this paper, we present a multimodal emotion recognition framework called EmotionMeter
that combines brain waves and eye movements. To increase the feasibility and wearability …

An efficient LSTM network for emotion recognition from multichannel EEG signals

X Du, C Ma, G Zhang, J Li, YK Lai… - IEEE Transactions …, 2020 - ieeexplore.ieee.org
Most previous EEG-based emotion recognition methods studied hand-crafted EEG features
extracted from different electrodes. In this article, we study the relation among different EEG …

Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network

Y Liu, Y Ding, C Li, J Cheng, R Song, F Wan… - Computers in Biology …, 2020 - Elsevier
In recent years, deep learning (DL) techniques, and in particular convolutional neural
networks (CNNs), have shown great potential in electroencephalograph (EEG)-based …