Gaussian process regression for materials and molecules
VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …
methods in computational materials science and chemistry. The focus of the present review …
Four generations of high-dimensional neural network potentials
J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
Best practices in machine learning for chemistry
Best practices in machine learning for chemistry | Nature Chemistry Skip to main content
Thank you for visiting nature.com. You are using a browser version with limited support for …
Thank you for visiting nature.com. You are using a browser version with limited support for …
Physics-inspired structural representations for molecules and materials
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …
predict or elucidate the relationship between the atomic-scale structure of matter and its …
Machine learning for chemical reactions
M Meuwly - Chemical Reviews, 2021 - ACS Publications
Machine learning (ML) techniques applied to chemical reactions have a long history. The
present contribution discusses applications ranging from small molecule reaction dynamics …
present contribution discusses applications ranging from small molecule reaction dynamics …
Recent advances and applications of machine learning in solid-state materials science
One of the most exciting tools that have entered the material science toolbox in recent years
is machine learning. This collection of statistical methods has already proved to be capable …
is machine learning. This collection of statistical methods has already proved to be capable …
Machine learning for electronically excited states of molecules
J Westermayr, P Marquetand - Chemical Reviews, 2020 - ACS Publications
Electronically excited states of molecules are at the heart of photochemistry, photophysics,
as well as photobiology and also play a role in material science. Their theoretical description …
as well as photobiology and also play a role in material science. Their theoretical description …
Neural network potentials: A concise overview of methods
In the past two decades, machine learning potentials (MLPs) have reached a level of
maturity that now enables applications to large-scale atomistic simulations of a wide range …
maturity that now enables applications to large-scale atomistic simulations of a wide range …
Neural network potential energy surfaces for small molecules and reactions
S Manzhos, T Carrington Jr - Chemical Reviews, 2020 - ACS Publications
We review progress in neural network (NN)-based methods for the construction of
interatomic potentials from discrete samples (such as ab initio energies) for applications in …
interatomic potentials from discrete samples (such as ab initio energies) for applications in …
Big-data science in porous materials: materials genomics and machine learning
By combining metal nodes with organic linkers we can potentially synthesize millions of
possible metal–organic frameworks (MOFs). The fact that we have so many materials opens …
possible metal–organic frameworks (MOFs). The fact that we have so many materials opens …