Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries
J Wu, T Ye, Y Wang, P Yang, Q Wang, W Kuang… - ACS …, 2022 - ACS Publications
Because of their high energy density, low cost, and environmental friendliness, lithium–
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …
Recent Progress for Concurrent Realization of Shuttle‐Inhibition and Dendrite‐Free Lithium–Sulfur Batteries
Abstract Lithium–sulfur (Li–S) batteries have become one of the most promising new‐
generation energy storage systems owing to their ultrahigh energy density (2600 Wh kg− 1) …
generation energy storage systems owing to their ultrahigh energy density (2600 Wh kg− 1) …
Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries
Catalytic conversion of polysulfides is regarded as a crucial approach to enhancing kinetics
and suppressing the shuttle effect in lithium–sulfur (Li–S) batteries. However, the activity …
and suppressing the shuttle effect in lithium–sulfur (Li–S) batteries. However, the activity …
P‐Doped NiTe2 with Te‐Vacancies in Lithium–Sulfur Batteries Prevents Shuttling and Promotes Polysulfide Conversion
Abstract Lithium–sulfur (Li–S) batteries have been hindered by the shuttle effect and
sluggish polysulfide conversion kinetics. Here, a P‐doped nickel tellurium electrocatalyst …
sluggish polysulfide conversion kinetics. Here, a P‐doped nickel tellurium electrocatalyst …
Advances in high sulfur loading cathodes for practical lithium‐sulfur batteries
Lithium‐sulfur batteries hold great potential for next‐generation energy storage systems,
due to their high theoretical energy density and the natural abundance of sulfur. Although …
due to their high theoretical energy density and the natural abundance of sulfur. Although …
Strategies toward high-loading lithium–sulfur batteries
A high sulfur loading is an essential prerequisite for the practical application of lithium–sulfur
batteries. However, it will inevitably exacerbate the shuttling effect and slow down the …
batteries. However, it will inevitably exacerbate the shuttling effect and slow down the …
Advances in lithium–sulfur batteries: from academic research to commercial viability
Lithium‐ion batteries, which have revolutionized portable electronics over the past three
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …
Engineering d‐p Orbital Hybridization in Single‐Atom Metal‐Embedded Three‐Dimensional Electrodes for Li–S Batteries
Single‐atom metal catalysts (SACs) are used as sulfur cathode additives to promote battery
performance, although the material selection and mechanism that govern the catalytic …
performance, although the material selection and mechanism that govern the catalytic …
ZnS-SnS@ NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries
Lithium–sulfur (Li–S) batteries are severely hindered by the low sulfur utilization and short
cycling life, especially at high rates. One of the effective solutions to address these problems …
cycling life, especially at high rates. One of the effective solutions to address these problems …
Oxygen Defect‐Rich WO3−x–W3N4 Mott–Schottky Heterojunctions Enabling Bidirectional Catalysis for Sulfur Cathode
D Zhang, T Duan, Y Luo, S Liu, W Zhang… - Advanced Functional …, 2023 - Wiley Online Library
The serious shuttle effect and intrinsically sluggish oxidation–reduction reaction kinetics of
polysulfides severely hinder the practical commercialization of lithium–sulfur (Li–S) …
polysulfides severely hinder the practical commercialization of lithium–sulfur (Li–S) …