[HTML][HTML] A comprehensive review on ensemble deep learning: Opportunities and challenges
A Mohammed, R Kora - Journal of King Saud University-Computer and …, 2023 - Elsevier
In machine learning, two approaches outperform traditional algorithms: ensemble learning
and deep learning. The former refers to methods that integrate multiple base models in the …
and deep learning. The former refers to methods that integrate multiple base models in the …
Deep learning modelling techniques: current progress, applications, advantages, and challenges
Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …
[HTML][HTML] A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease
Alzheimer's disease (AD) is a progressive and irreversible brain degenerative disorder. Mild
cognitive impairment (MCI) is a clinical precursor of AD. Although some treatments can …
cognitive impairment (MCI) is a clinical precursor of AD. Although some treatments can …
Ensemble deep learning and internet of things‐based automated COVID‐19 diagnosis framework
AS Kini, AN Gopal Reddy, M Kaur… - Contrast Media & …, 2022 - Wiley Online Library
Coronavirus disease (COVID‐19) is a viral infection caused by SARS‐CoV‐2. The
modalities such as computed tomography (CT) have been successfully utilized for the early …
modalities such as computed tomography (CT) have been successfully utilized for the early …
Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation
J Wen, E Thibeau-Sutre, M Diaz-Melo… - Medical image …, 2020 - Elsevier
Numerous machine learning (ML) approaches have been proposed for automatic
classification of Alzheimer's disease (AD) from brain imaging data. In particular, over 30 …
classification of Alzheimer's disease (AD) from brain imaging data. In particular, over 30 …
Machine learning techniques for the diagnosis of Alzheimer's disease: A review
Alzheimer's disease is an incurable neurodegenerative disease primarily affecting the
elderly population. Efficient automated techniques are needed for early diagnosis of …
elderly population. Efficient automated techniques are needed for early diagnosis of …
Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of
epilepsy. The EEG signal contains information about the electrical activity of the brain …
epilepsy. The EEG signal contains information about the electrical activity of the brain …
Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia
Alzheimer's disease (AD) is one of the most common form of dementia which mostly affects
elderly people. AD identification in early stages is a difficult task in medical practice and …
elderly people. AD identification in early stages is a difficult task in medical practice and …
Deep learning to detect Alzheimer's disease from neuroimaging: A systematic literature review
Alzheimer's Disease (AD) is one of the leading causes of death in developed countries.
From a research point of view, impressive results have been reported using computer-aided …
From a research point of view, impressive results have been reported using computer-aided …
A survey on deep learning in medical image analysis
Deep learning algorithms, in particular convolutional networks, have rapidly become a
methodology of choice for analyzing medical images. This paper reviews the major deep …
methodology of choice for analyzing medical images. This paper reviews the major deep …