Vertical federated learning: Concepts, advances, and challenges

Y Liu, Y Kang, T Zou, Y Pu, Y He, X Ye… - … on Knowledge and …, 2024 - ieeexplore.ieee.org
Vertical Federated Learning (VFL) is a federated learning setting where multiple parties with
different features about the same set of users jointly train machine learning models without …

A survey on homomorphic encryption schemes: Theory and implementation

A Acar, H Aksu, AS Uluagac, M Conti - ACM Computing Surveys (Csur), 2018 - dl.acm.org
Legacy encryption systems depend on sharing a key (public or private) among the peers
involved in exchanging an encrypted message. However, this approach poses privacy …

End-to-end privacy preserving deep learning on multi-institutional medical imaging

G Kaissis, A Ziller, J Passerat-Palmbach… - Nature Machine …, 2021 - nature.com
Using large, multi-national datasets for high-performance medical imaging AI systems
requires innovation in privacy-preserving machine learning so models can train on sensitive …

Crypten: Secure multi-party computation meets machine learning

B Knott, S Venkataraman, A Hannun… - Advances in …, 2021 - proceedings.neurips.cc
Secure multi-party computation (MPC) allows parties to perform computations on data while
keeping that data private. This capability has great potential for machine-learning …

Privacy and robustness in federated learning: Attacks and defenses

L Lyu, H Yu, X Ma, C Chen, L Sun… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
As data are increasingly being stored in different silos and societies becoming more aware
of data privacy issues, the traditional centralized training of artificial intelligence (AI) models …

MP-SPDZ: A versatile framework for multi-party computation

M Keller - Proceedings of the 2020 ACM SIGSAC conference on …, 2020 - dl.acm.org
Multi-Protocol SPDZ (MP-SPDZ) is a fork of SPDZ-2 (Keller et al., CCS'13), an
implementation of the multi-party computation (MPC) protocol called SPDZ (Damgård et al …

Pysyft: A library for easy federated learning

A Ziller, A Trask, A Lopardo, B Szymkow… - … Systems: Towards Next …, 2021 - Springer
PySyft is an open-source multi-language library enabling secure and private machine
learning by wrapping and extending popular deep learning frameworks such as PyTorch in …

Feature inference attack on model predictions in vertical federated learning

X Luo, Y Wu, X Xiao, BC Ooi - 2021 IEEE 37th International …, 2021 - ieeexplore.ieee.org
Federated learning (FL) is an emerging paradigm for facilitating multiple organizations' data
collaboration without revealing their private data to each other. Recently, vertical FL, where …

{ABY2. 0}: Improved {Mixed-Protocol} secure {Two-Party} computation

A Patra, T Schneider, A Suresh, H Yalame - 30th USENIX Security …, 2021 - usenix.org
Secure Multi-party Computation (MPC) allows a set of mutually distrusting parties to jointly
evaluate a function on their private inputs while maintaining input privacy. In this work, we …

Hybridalpha: An efficient approach for privacy-preserving federated learning

R Xu, N Baracaldo, Y Zhou, A Anwar… - Proceedings of the 12th …, 2019 - dl.acm.org
Federated learning has emerged as a promising approach for collaborative and privacy-
preserving learning. Participants in a federated learning process cooperatively train a model …