Generative models as an emerging paradigm in the chemical sciences
DM Anstine, O Isayev - Journal of the American Chemical Society, 2023 - ACS Publications
Traditional computational approaches to design chemical species are limited by the need to
compute properties for a vast number of candidates, eg, by discriminative modeling …
compute properties for a vast number of candidates, eg, by discriminative modeling …
Artificial intelligence to deep learning: machine intelligence approach for drug discovery
Drug designing and development is an important area of research for pharmaceutical
companies and chemical scientists. However, low efficacy, off-target delivery, time …
companies and chemical scientists. However, low efficacy, off-target delivery, time …
Identification and prioritization of environmental organic pollutants: from an analytical and toxicological perspective
Exposure to environmental organic pollutants has triggered significant ecological impacts
and adverse health outcomes, which have been received substantial and increasing …
and adverse health outcomes, which have been received substantial and increasing …
Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond
Deep neural networks have been well-known for their superb handling of various machine
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …
Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
In the last few years, the deep learning (DL) computing paradigm has been deemed the
Gold Standard in the machine learning (ML) community. Moreover, it has gradually become …
Gold Standard in the machine learning (ML) community. Moreover, it has gradually become …
Deep learning for the design of photonic structures
Innovative approaches and tools play an important role in shaping design, characterization
and optimization for the field of photonics. As a subset of machine learning that learns …
and optimization for the field of photonics. As a subset of machine learning that learns …
Partial success in closing the gap between human and machine vision
A few years ago, the first CNN surpassed human performance on ImageNet. However, it
soon became clear that machines lack robustness on more challenging test cases, a major …
soon became clear that machines lack robustness on more challenging test cases, a major …
The impact of artificial intelligence on the labor market
M Webb - Available at SSRN 3482150, 2019 - papers.ssrn.com
I develop a new method to predict the impacts of a technology on occupations. I use the
overlap between the text of job task descriptions and the text of patents to construct a …
overlap between the text of job task descriptions and the text of patents to construct a …
A critical review of machine learning of energy materials
Abstract Machine learning (ML) is rapidly revolutionizing many fields and is starting to
change landscapes for physics and chemistry. With its ability to solve complex tasks …
change landscapes for physics and chemistry. With its ability to solve complex tasks …